Advertisement

Prinzipien der angewandten Biokatalyse

  • Selin KaraEmail author
  • Jan von Langermann
Chapter

Zusammenfassung

Die Verwendung von Enzymen stellt eine Schlüsseltechnologie für die chemische Synthese dar, welche milde Reaktionsbedingungen mit hohen Selektivitäten verbindet. Die Biokatalyse hat sich hier in den letzten Jahrzehnten enorm entwickelt und bietet zahlreiche Lösungen für viele Problemstellungen im Bereich der Pharma-, Feinchemie-, und Bulk-Chemikalien-Industrie. Dennoch ist die Biokatalyse eine sich kontinuierlich weiterentwickelnde Technologie mit dem Ziel, die Produktivität der Synthesewege zu erhöhen, Umweltverschmutzung und Kosten zu verringern und damit mehr Nachhaltigkeit zu schaffen. Dieses Buchkapitel konzentriert sich auf neu entwickelte Prozesskonzepte, welche die Biokatalyse zu einer zukünftigen Schlüsseltechnologie für die Synthese der Chemikalien unseres Bedarfs machen.

Literatur

  1. Bisogno FR, Lavandera I, Kroutil W, Gotor V (2009) Tandem Concurrent Processes: One-Pot Single-Catalyst Biohydrogen Transfer for the Simultaneous Preparation of Enantiopure Secondary Alcohols. The Journal of Organic Chemistry 74 (4):1730-1732.  https://doi.org/10.1021/jo802350fCrossRefGoogle Scholar
  2. Bornadel A, Hatti-Kaul R, Hollman F, Kara S (2015) A bi-enzymatic convergent cascade for e-caprolactone synthesis employing 1,6-hexanediol as a ‚double-smart cosubstrate’. ChemCatChem. doi:  https://doi.org/10.1002/cctc.201500511r1
  3. Buque-Taboada EM, Straathof AJJ, Heijnen JJ, Van Der Wielen LAM (2005) Microbial reduction and in situ product crystallization coupled with biocatalyst cultivation during the synthesis of 6R-dihydrooxoisophorone. Advanced Synthesis and Catalysis 347 (7–8):1147-1154.  https://doi.org/10.1002/adsc.200505024CrossRefGoogle Scholar
  4. Duwensee J, Wenda S, Ruth W, Kragl U (2009) Lipase-catalyzed polycondensation in water: A new approach for polyester synthesis. Organic Process Research & Development 14 (1):48–57CrossRefGoogle Scholar
  5. Ferloni C, Heinemann M, Hummel W, Daussmann T, Buchs J (2004) Optimization of enzymatic gas-phase reactions by increasing the long-term stability of the catalyst. Biotechnology Progress 20 (3):975–978.  https://doi.org/10.1021/bp0334334e
  6. Goldberg K, Edegger K, Kroutil W, Liese A (2006) Overcoming the thermodynamic limitation in asymmetric hydrogen transfer reactions catalyzed by whole cells. Biotechnol Bioeng 95 (1):192–198.  https://doi.org/10.1002/bit.21014CrossRefGoogle Scholar
  7. Haak RM, Berthiol F, Jerphagnon T, Gayet AJA, Tarabiono C, Postema CP, Ritleng V, Pfeffer M, Janssen DB, Minnaard AJ, Feringa BL, de Vries JG (2008) Dynamic Kinetic Resolution of Racemic β-Haloalcohols: Direct Access to Enantioenriched Epoxides. Journal of the American Chemical Society 130 (41):13508-13509.  https://doi.org/10.1021/ja805128xCrossRefGoogle Scholar
  8. Kara S, Schrittwieser JH, Hollmann F, Ansorge-Schumacher MB (2014) Recent trends and novel concepts in cofactor-dependent biotransformations. Appl Microbiol Biotechnol 98 (4):1517-1529.  https://doi.org/10.1007/s00253-013-5441-5CrossRefGoogle Scholar
  9. Kara S, Spickermann D, Schrittwieser JH, Leggewie C, van Berkel WJH, Arends IWCE, Hollmann F (2013) More efficient redox biocatalysis by utilising 1,4-butanediol as a ‚smart cosubstrate’. Green Chem 15 (2):330–335.  https://doi.org/10.1039/c2gc36797aCrossRefGoogle Scholar
  10. Lavandera In, Kern A, Resch V, Ferreira-Silva B, Glieder A, Fabian WMF, de Wildeman S, Kroutil W (2008) One-Way Biohydrogen Transfer for Oxidation ofsec-Alcohols. Org Lett 10 (11):2155-2158.  https://doi.org/10.1021/ol800549fCrossRefGoogle Scholar
  11. Lee DC, Kim HS (1998) Optimization of a heterogeneous reaction system for the production of optically active D-amino acids using thermostable D-hydantoinase. Biotechnology and Bioengineering 60 (6):729–738.  https://doi.org/10.1002/(sici)1097-0290(19981220)60:6%3c729::aid-bit9%3e3.0.co;2-gCrossRefGoogle Scholar
  12. Mertens R, Greiner L, van den Ban ECD, Haaker HBCM, Liese A (2003) Practical applications of hydrogenase I from Pyrococcus furiosus for NADPH generation and regenerierung. J Mol Catal B: Enzym 24–25:39–52.  https://doi.org/10.1016/s1381-1177(03)00071-7CrossRefGoogle Scholar
  13. Paul CE, Arends IWCE, Hollmann F (2014) Is Simpler Better? Synthetic Nicotinamide Cofactor Analogues for Redox Chemistry. ACS Catal 4 (3):788–797.  https://doi.org/10.1021/cs4011056CrossRefGoogle Scholar
  14. Schmidt S, Scherkus C, Muschiol J, Menyes U, Winkler T, Hummel W, Gröger H, Liese A, Herz H-G, Bornscheuer UT (2015) An Enzyme Cascade Synthesis of ε-Caprolactone and its Oligomers. Angew Chem Int Ed 54 (9):2784-2787.  https://doi.org/10.1002/anie.201410633CrossRefGoogle Scholar
  15. Schrittwieser JH, Lavandera I, Seisser B, Mautner B, Spelberg JHL, Kroutil W (2009) Shifting the equilibrium of a biocatalytic cascade synthesis to enantiopure epoxides using anion exchangers. Tetrahedron-Asymmetry 20 (4):483–488.  https://doi.org/10.1016/j.tetasy.2009.02.035CrossRefGoogle Scholar
  16. Stillger T, Pohl M, Wandrey C, Liese A (2006) Reaction engineering of benzaldehyde lyase from Pseudomonas fluorescens catalyzing enantioselective C-C bond formation. Organic Process Research and Development 10 (6):1172-1177.  https://doi.org/10.1021/op0601316CrossRefGoogle Scholar
  17. Straathof AJJ, Adlercreutz P (2000) Applied Biocatalysis. CRC Press, Boca Raton, USAGoogle Scholar
  18. Turner NJ (2010) Deracemisation methods. Curr Opin Chem Biol 14 (2):115–121.  https://doi.org/10.1016/j.cbpa.2009.11.027CrossRefGoogle Scholar
  19. Vicenzi JT, Zmijewski MJ, Reinhard MR, Landen BE, Muth WL, Marler PG (1997) Large-scale stereoselective enzymatic ketone reduction with in situ product removal via polymeric adsorbent resins. Enzyme and Microbial Technology 20 (7):494–499.  https://doi.org/10.1016/s0141-0229(96)00177-9CrossRefGoogle Scholar
  20. von Langermann J, Mell A, Paetzold E, Daußmann T, Kragl U (2007) Hydroxynitrile lyase in organic solvent-free systems to overcome thermodynamic limitations. Advanced Synthesis and Catalysis 349 (8–9):1418-1424.  https://doi.org/10.1002/adsc.200700016CrossRefGoogle Scholar
  21. Weckbecker A, Gröger H, Hummel W (2010) Regenerierung of Nicotinamide Coenzymes: Principles and Applications for the Synthesis of Chiral Compounds. 120:195–242.  https://doi.org/10.1007/10_2009_55CrossRefGoogle Scholar
  22. Würges K, Petrusevska-Seebach K, Elsner MP, Lütz S (2009) Enzyme-assisted physicochemical enantioseparation processes - Part III: Overcoming yield limitations by dynamic kinetic resolution of asparagine via preferential crystallization and enzymatic racemization. Biotechnology and bioengineering 104 (6):1235–1239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Engineering, Biological and Chemical Engineering SectionAarhus UniversityAarhusDenmark
  2. 2.Institut für ChemieUniversität RostockRostockDeutschland

Personalised recommendations