Advertisement

Nonparametric Statistics

  • Allen M. Khakshooy
  • Francesco Chiappelli
Chapter
  • 450 Downloads

Abstract

The three assumptions (i.e., normality, independence of measurement, and homogeneity of variance) are necessary for parametric statistics as mentioned in the previous chapters. Nonparametric statistics is a statistical method where the three assumptions are not satisfied and the data are not continuous. It uses data that is categorical and that does not rely on numbers but instead a ranking or order of slots. Nonparametric statistics is different from parametric in that the model structure is determined from the data itself.

Keywords

Wilcoxon rank sum test Wilcoxon signed-ranked test Mann–Whitney U Kruskal–Wallis test Friedman two-way analysis Geisser–Greenhouse correction Chi-square χContingency table Yates’ correction for continuity Logrank nonparametric test Cox proportional hazard regression analysis Spearman rank Kendall’s tau Factor analysis Homoscedasticity Multiple linear regression 

Supplementary material

Video 10

Wilcoxon rank-sum. Reprint courtesy of International Business Machines Corporation, © International Business Machines Corporation (MOV 47073 kb)

Video 11

Wilcoxon signed-rank. Reprint courtesy of International Business Machines Corporation, © International Business Machines Corporation (MOV 41628 kb)

Video 12

Mann–Whitney U. Reprint courtesy of International Business Machines Corporation, © International Business Machines Corporation (MOV 47928 kb)

Video 13

Kruskal–Wallis H. Reprint courtesy of International Business Machines Corporation, © International Business Machines Corporation (MOV 41317 kb)

Video 14

Friedman. Reprint courtesy of International Business Machines Corporation, © International Business Machines Corporation (MOV 38597 kb)

Video 15

Chi-square. Reprint courtesy of International Business Machines Corporation, © International Business Machines Corporation (MOV 99841 kb)

Video 16

Logistic regression. Reprint courtesy of International Business Machines Corporation, © International Business Machines Corporation (MOV 98064 kb)

Recommended Reading

  1. Bagdonavicius V, Kruopis J, Nikulin MS. Non-parametric tests for complete data. London/Hoboken: ISTE/Wiley; 2011.Google Scholar
  2. Bonferroni CE. Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del Real Istituto Superiore di Scienze Economiche e Commerciali di Firenze. 1936;8:3–62.Google Scholar
  3. Chiappelli F. Fundamentals of evidence-based health care and translational science. Heidelberg: Springer-Verlag; 2014.CrossRefGoogle Scholar
  4. Conover WJ. Practical nonparametric statistics. New York: Wiley; 1960.Google Scholar
  5. Corder GW, Foreman DI. Nonparametric statistics: a step-by-step approach. New York: Wiley; 2014.Google Scholar
  6. Dunn OJ. Multiple comparisons using rank sums. Technometrics. 1964;6:241–52.CrossRefGoogle Scholar
  7. Fisher RA. Statistical methods for research workers. Edinburgh: Oliver and Boyd; 1925.Google Scholar
  8. Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1937;32:675–701.CrossRefGoogle Scholar
  9. Friedman M. A correction: the use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc. 1939;34:109.Google Scholar
  10. Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann Math Stat. 1940;11:86–92.CrossRefGoogle Scholar
  11. Hollander M, Wolfe DA, Chicken E. Nonparametric statistical methods. New York: Wiley; 2014.Google Scholar
  12. Hosmer DW, Lemeshow S. Applied logistic regression. 2nd ed. New York: Wiley; 2000.CrossRefGoogle Scholar
  13. Kruskal W, Wallis A. Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952a;47:583–621.CrossRefGoogle Scholar
  14. Kruskal WH, Wallis WA. Errata to Use of ranks in one-criterion variance analysis. J Am Stat Assoc. 1952b;48:907–11.CrossRefGoogle Scholar
  15. Mauchly JW. Significance test for sphericity of a normal n-variate distribution. Ann Math Stat. 1940;11:204–9.CrossRefGoogle Scholar
  16. Pratt J. Remarks on zeros and ties in the Wilcoxon signed rank procedures. J Am Stat Assoc. 1959;54:655–67.CrossRefGoogle Scholar
  17. Wasserman L. All of nonparametric statistics. New York: Springer; 2007.Google Scholar
  18. Wilcoxon F. Individual comparisons by ranking methods. Biom Bull. 1945;1:80–3.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Allen M. Khakshooy
    • 1
  • Francesco Chiappelli
    • 2
  1. 1.Rappaport Faculty of MedicineTechnion-Israel Institute of TechnologyHaifaIsrael
  2. 2.UCLA School of DentistryLos AngelesUSA

Personalised recommendations