Advertisement

Braunes Fettgewebe: Energiebilanz und Thermoregulation

  • Daniel TewsEmail author
  • Martin Wabitsch
Chapter
Part of the Springer Reference Medizin book series (SRM)

Zusammenfassung

Zur Regulation der Körpertemperatur verfügen Säugetiere über braunes Fettgewebe („brown adipose tissue“, BAT), welches erhebliche Mengen von chemischer Energie in Wärme umwandeln kann. Die Entdeckung von funktionell aktivem BAT bei Erwachsenen führte zu Überlegungen, seine Aktivität im Rahmen einer Adipositastherapie zu nutzen. In diesem Kapitel sollen grundlegende Mechanismen der BAT-Thermogenese dargestellt sowie die physiologische Relevanz des BAT hinsichtlich der Körpergewichtsregulation beim Menschen mit Fokus auf Kinder und Jugendliche diskutiert werden.

Literatur

  1. Aherne W, Hull D (1964) The site of heat production in the newborn infant. Proc R Soc Med 57:1172–1173PubMedPubMedCentralGoogle Scholar
  2. Aherne W, Hull D (1966) Brown adipose tissue and heat production in the newborn infant. J Pathol Bacteriol 91:223–234.  https://doi.org/10.1002/path.1700910126CrossRefPubMedGoogle Scholar
  3. Asakura H (2004) Fetal and neonatal thermoregulation. J Nihon Med Sch = Nihon Ika Daigaku zasshi 71:360–370.  https://doi.org/10.1272/jnms.71.360CrossRefGoogle Scholar
  4. Cannon B, Nedergaard J (2004) Brown adipose tissue: function and physiological significance. Physiol Rev 84:277–359.  https://doi.org/10.1152/physrev.00015.2003CrossRefPubMedGoogle Scholar
  5. Chondronikola M, Volpi E, Børsheim E, Porter C, Annamalai P, Enerbäck S, Lidell ME, Saraf MK, Labbe SM, Hurren NM, Yfanti C, Chao T, Andersen CR, Cesani F, Hawkins H, Sidossis LS (2014) Brown adipose tissue improves whole body glucose homeostasis and insulin sensitivity in humans. Diabetes.  https://doi.org/10.2337/db14-0746CrossRefGoogle Scholar
  6. Cypess AM, Weiner LS, Roberts-Toler C, Elía EF, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM (2015) Activation of human brown adipose tissue by a β3-Adrenergic receptor agonist. Cell Metab 21:33–38.  https://doi.org/10.1016/j.cmet.2014.12.009CrossRefPubMedPubMedCentralGoogle Scholar
  7. Enerbäck S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, Kozak LP (1997) Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature.  https://doi.org/10.1038/387090a0CrossRefGoogle Scholar
  8. Gilsanz V, Chung SA, Jackson H, Dorey FJ, Hu HH (2011) Functional brown adipose tissue is related to muscle volume in children and adolescents. J Pediatr 158:722–726.  https://doi.org/10.1016/j.jpeds.2010.11.020CrossRefPubMedGoogle Scholar
  9. Hatai S (1902) On the presence in human embryos of an interscapular gland corresponding to the so-called hibernating gland of lower mammals. Anat Anz 21:369–373Google Scholar
  10. Heaton JM (1972) The distribution of brown adipose tissue in the human. J Anat 112:35–39PubMedPubMedCentralGoogle Scholar
  11. Lean ME, James WP, Jennings G, Trayhurn P (1986) Brown adipose tissue uncoupling protein content in human infants, children and adults. Clin Sci (London, Engl 1979) 71(3):291–297CrossRefGoogle Scholar
  12. Muzik O, Mangner TJ, Granneman JG (2012) Assessment of oxidative metabolism in brown fat using {PET} imaging. Front Endocrinol (Lausanne) 3:15.  https://doi.org/10.3389/fendo.2012.00015CrossRefGoogle Scholar
  13. Ouellet V, Labbé SM, Blondin DP, Phoenix S, Guérin B, Haman F, Turcotte EE, Richard D, Carpentier AC (2012) Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest 122:545–552.  https://doi.org/10.1172/JCI60433CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ponrartana S, Aggabao PC, Hu HH, Aldrovandi GM, Wren T a L, Gilsanz V (2012) Brown adipose tissue and its relationship to bone structure in pediatric patients. J Clin Endocrinol Metab 97:2693–2698.  https://doi.org/10.1210/jc.2012-1589CrossRefPubMedPubMedCentralGoogle Scholar
  15. Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, Kajimura S (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One 7.  https://doi.org/10.1371/journal.pone.0049452CrossRefGoogle Scholar
  16. Symonds ME, Henderson K, Elvidge L, Bosman C, Sharkey D, Perkins AC, Budge H (2012) Thermal imaging to assess age-related changes of skin temperature within the supraclavicular region co-locating with brown adipose tissue in healthy children. J Pediatr.  https://doi.org/10.1016/j.jpeds.2012.04.056CrossRefGoogle Scholar
  17. Tews D, Fischer-Posovszky P, Debatin KM, Beer AJ, Wabitsch M (2017) Physiological relevance of brown adipose tissue in humans. Monatsschr Kinderheilkd 165(6):502–509.  https://doi.org/10.1007/s00112-016-0129-4CrossRefGoogle Scholar
  18. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525.  https://doi.org/10.1056/NEJMoa0808949. 360/15/1518 [pii]CrossRefPubMedGoogle Scholar
  19. Zingaretti MC, Crosta F, Vitali A, Guerrieri M, Frontini A, Cannon B, Nedergaard J, Cinti S (2009) The presence of UCP1 demonstrates that metabolically active adipose tissue in the neck of adult humans truly represents brown adipose tissue. FASEB J 23:3113–3120.  https://doi.org/10.1096/fj.09-133546CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2020

Authors and Affiliations

  1. 1.Sektion Pädiatrische Endokrinologie und Diabetologie Hormonzentrum für Kinder und Jugendliche, Klinik für Kinder- und JugendmedizinUniversitätsklinikum UlmUlmDeutschland

Section editors and affiliations

  • Martin Wabitsch
    • 1
  1. 1.Sektion Pädiatrische Endokrinologie und DiabetologieUniversitätsklinikum Ulm, Universitätsklinik für Kinder- und JugendmedizinUlmDeutschland

Personalised recommendations