Advertisement

Sonstige neurologische Erkrankungen

  • O. HöffkenEmail author
  • L. MüllerEmail author
  • M. KitzrowEmail author
  • F. HopfnerEmail author

Zusammenfassung

Einzelne ausgewählte neurologische Erkrankungen ohne Zuordnung zu den vorherigen Beiträgen werden im letzten Kapitel dieses Buches behandelt. Neben einer Betrachtung zur Pathophysiologie der Narkolepsie wird auf die häufig vorkommenden Erkrankungen des Normaldruckhydrozephalus und des essenziellen Tremors eingegangen. Dabei werden je nach Erkrankung neben der Erläuterung grundlegender pathophysiologischer Prinzipien auch genetische, histologische und therapeutische Aspekte der Erkrankungen mit aufgegriffen und in kompakter Form präsentiert.

Literatur

Literatur zu Abschn. 9.1

  1. Borbely AA, Achermann P (1999) Sleep homeostasis and models of sleep regulation. J Biol Rhythms 14 (6): 557–568CrossRefGoogle Scholar
  2. Burgess CR, Scammell TE (2012) Narcolepsy: neural mechanisms of sleepiness and cataplexy. J Neurosci 32 (36): 12305–12311CrossRefPubMedGoogle Scholar
  3. Cajochem C (2009) Schlafregulation. Somnologie 13: 64–71CrossRefGoogle Scholar
  4. Cvetkovic-Lopes V, Bayer L, Dorsaz S, Maret S, Pradervand S, Dauvilliers Y, Lecendreux M, Lammers GJ, Donjacour CE, Du Pasquier RA et al. (2010) Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients . J Clin Invest 120 (3): 713–719CrossRefPubMedGoogle Scholar
  5. Dauvilliers Y, Siegel JM, Lopez R, Torontali ZA, Peever JH (2014) Cataplexy–clinical aspects, pathophysiology and management strategy. Nat Rev Neurol 10 (7): 386–395CrossRefPubMedGoogle Scholar
  6. Dye TJ, Gurbani N, Simakajornboon N (2016) Epidemiology and Pathophysiology of Childhood Narcolepsy. Paediatr Respir Rev 25: 14–18CrossRefPubMedGoogle Scholar
  7. Elixmann I, Steudel WI (2016) In: Leonhardt S, Walter M (Hrsg) Analyse und Regelung des Hirndrucks beim Hydrozephalus. In: Medizintechnische Systeme. Springer, Berlin Heidelberg New York, S 400, Abb. 12.33CrossRefGoogle Scholar
  8. Hallmayer J, Faraco J, Lin L, Hesselson S, Winkelmann J, Kawashima M, Mayer G, Plazzi G, Nevsimalova S, Bourgin P et al. (2009) Narcolepsy is strongly associated with the T-cell receptor alpha locus. Nat Genet 41 (6): 708–711CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hor H, Kutalik Z, Dauvilliers Y, Valsesia A, Lammers GJ, Donjacour CE, Iranzo A, Santamaria J, Peraita Adrados R, Vicario JL et al. (2010) Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet 42 (9): 786–789CrossRefPubMedGoogle Scholar
  10. Masoudi S, Ploen D, Kunz K, Hildt E (2014a) The adjuvant component alpha-tocopherol triggers via modulation of Nrf2 the expression and turnover of hypocretin in vitro and its implication to the pandemic influenza vaccine in Quebec. PLoS One 9 (9): e108489Google Scholar
  11. Masoudi S et al. (2014b) The adjuvant component α-tocopherol triggers via modulation of Nrf2 the expression and turnover of hypocretin in vitro and its implication to the development of narcolepsy. Vaccine 2014; 32 (25): 2980–2988CrossRefPubMedGoogle Scholar
  12. Montplaisir J, Petit D, Quinn MJ, Ouakki M, Deceuninck G, Desautels A, Mignot E, De Wals P (2015) Risk of narcolepsy associated with inactivated adjuvanted (AS03) A/H1N1 (2009) Scammell TE: Narcolepsy. N Engl J Med 373 (27): 2654–2662Google Scholar
  13. Oberle D, Pavel J, Mayer G, Geisler P, Keller-Stanislawski B, German Narcolepsy Study Group (2017) Retrospective multicenter matched case-control study on the risk factors for narcolepsy with special focus on vaccinations (including pandemic influenza vaccination) and infections in Germany. Sleep Med 34: 71–83Google Scholar
  14. Overeem S, van Nues SJ, van der Zande WL, Donjacour CE, van Mierlo P, Lammers GJ (2011) The clinical features of cataplexy: a questionnaire study in narcolepsy patients with and without hypocretin-1deficiency. Sleep Med 12 (1): 12–18CrossRefPubMedGoogle Scholar
  15. Paul-Ehrlich-Institut (2016) Aktuelle Informationen zu Narkolepsie im zeitlichen Zusammenhang mit A/H1N1 Influenzaimpfung. https://www.pei.de/DE/arzneimittelsicherheit-vigilanz/archiv-sicherheitsinformationen/narkolepsie/narkolepsie-studien-europa.html
  16. Picchioni D, Hope CR, Harsh JR (2007) A case-control study of the environmental risk factors for narcolepsy . Neuroepidemiology 2007; 29 (3–4): 185–192CrossRefPubMedGoogle Scholar
  17. Plazzi G, Pizza F, Palaia V, Franceschini C, Poli F, Moghadam KK, Cortelli P, Nobili L, Bruni O, Dauvilliers Y et al. (2011) Complex movement disorders at disease onset in childhood narcolepsy with cataplexy. Brain 134 (Pt 12): 3477–3489CrossRefGoogle Scholar
  18. Winkelmann J, Lin L, Schormair B, Kornum BR, Faraco J, Plazzi G, Melberg A, Cornelio F, Urban AE, Pizza F et al. (2012) Mutations in DNMT1 cause autosomal dominant cerebellar ataxia, deafness and narcolepsy. Hum Mol Genet 21 (10): 2205–2210CrossRefPubMedPubMedCentralGoogle Scholar

Literatur zu Abschn. 9.2

  1. Adams RD, Fisher CM, Hakim S, Ojemann RG, Sweet WH (1965) Symptomatic Occult Hydrocephalus with Normal Cerebrospinal-Fluid Pressure. New Engl J Med 273 (3): 117–126CrossRefPubMedGoogle Scholar
  2. Bateman GA (2008) The Pathophysiology of Idiopathic Normal Pressure Hydrocephalus: Cerebral Ischemia or Altered Venous Hemodynamics? AJNR Am J Neuroradiol 29 (1): 198–203CrossRefPubMedGoogle Scholar
  3. Berlit P (Hrsg) (2012) Klinische Neurologie, 3. Aufl. Springer, Berlin Heidelberg New York, S 794Google Scholar
  4. Bradley WG (2002) Cerebrospinal fluid dynamics and shunt responsiveness in patients with normal-pressure hydrocephalus. Mayo Clinic Proceedings 77 (6)507–8CrossRefPubMedGoogle Scholar
  5. De Mol J (1986) Neuropsychological symptomatology in normal pressure hydrocephalus. Schweizer Arch Neurol Psychiat (Zürich, Switzerland; 1985),137 (4): 33–45Google Scholar
  6. Greitz D (2002) On the active vascular absorption of plasma proteins from tissue: rethinking the role of the lymphatic system. Med Hypoth 59: 696–702CrossRefGoogle Scholar
  7. Greitz D (2004) Radiological assessment of hydrocephalus: new theories and implications for therapy. Neurosurg Rev 27: 145–165Google Scholar
  8. Hakim CA Hakim R, Hakim S (2001) Normal-pressure hydrocephalus. Neurosurgery Clinics of North America 12 (4): 761–73CrossRefPubMedGoogle Scholar
  9. Jaraj D, Rabiei K, Marlow T, Jensen C, Skoog I, Wikkelsø C (2014) Prevalence of idiopathic normal-pressure hydrocephalus. Neurology 82 (16): 1449–54CrossRefPubMedPubMedCentralGoogle Scholar
  10. Jurcoane A, Keil F, Szelenyi A, Pfeilschifter W, Singer OC, Hattingen E (2014) Directional diffusion of corticospinal tract supports therapy decisions in idiopathic normal-pressure hydrocephalus. Neuroradiology 56 (1): 5–13CrossRefPubMedGoogle Scholar
  11. Lenfeldt N, Larsson A, Nyberg, L et al. (2008). Idiopathic normal pressure hydrocephalus: increased supplementary motor activity accounts for improvement after CSF drainage. Brain 131 (11): 2904–2912CrossRefPubMedGoogle Scholar
  12. Krishnamurthy S, Li J (2014) New concepts in the pathogenesis of hydrocephalus. Transl Pediatr 3 (3): 185–194Google Scholar
  13. Levine DN (2008) Intracranial pressure and ventricular expansion in hydrocephalus: Have we been asking the wrong question? J Neurol Sci 269 (1–2): 1–11CrossRefPubMedGoogle Scholar
  14. Linn J, Wiesmann M, Brückmann H (Hrsg) (2011) Atlas der klinischen Neuroradiologie des Gehirns. Springer, Berlin Heidelberg New YorkGoogle Scholar
  15. Momjian S, Owler BK, Czosnyka Z, Czosnyka M, Pena A, Pickard JD (2004) Pattern of white matter regional cerebral blood flow and autoregulation in normal pressure hydrocephalus. Brain 127 (5): 965–972CrossRefPubMedGoogle Scholar
  16. OwlerBK, Pickard JD (2001) Normal pressure hydrocephalus and cerebral blood flow: a review. Acta Neurologica Scandinavica104 (6): 325–342CrossRefPubMedGoogle Scholar
  17. Paulus W, Schröder JM (2012) Neuropathologie. In: Klöppel G, Kreipe HH, Remmele W (Hrsg) Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Sakka L, Coll G, Chazal J (2011) Anatomy and physiology of cerebrospinal fluid. European Annals of Otorhinolaryngology, Head and Neck Diseases 128 (6): 309–316CrossRefPubMedGoogle Scholar
  19. Spiegelberg A, Preuß M, Kurtcuoglu V (2016) B-waves revisited. Interdisciplinary Neurosurgery 6: 13–17CrossRefGoogle Scholar
  20. Stephensen H, Tisell M, Wikkelsö C (2002) There is no transmantle pressure gradient in communicating or noncommunicating hydrocephalus. Neurosurgery 50 (4): 763–771CrossRefGoogle Scholar

Literatur zu Abschn. 9.3

  1. Bain PG, Findley LJ, Thompson PD et al. (1994) A study of hereditary essential tremor. Brain 117 (Pt 4): 805–824CrossRefPubMedGoogle Scholar
  2. Berger UV, Hediger MA (1998) Comparative analysis of glutamate transporter expression in rat brain using differential double in situ hybridization. Anat Embryol 198: 13–30CrossRefPubMedGoogle Scholar
  3. Deuschl G, Petersen I, Lorenz D, Christensen K (2015) Tremor in the elderly: Essential and aging-related tremor. Mov Disord 30: 1327–1334CrossRefPubMedPubMedCentralGoogle Scholar
  4. Elble RJ (2016)The essential tremor syndromes. Curr Opin Neurol 29: 507–512CrossRefPubMedGoogle Scholar
  5. Elias WJ, Lipsman N, Ondo WG et al. (2016) A Randomized Trial of Focused Ultrasound Thalamotomy for Essential Tremor. N Engl J Med 375: 730–739Google Scholar
  6. Fang W, Chen H, Wang H et al. (2016) Essential tremor is associated with disruption of functional connectivity in the ventral intermediate Nucleus–Motor Cortex–Cerebellum circuit. Hum Brain Mapp 37: 165–178CrossRefPubMedGoogle Scholar
  7. Jenkins IH, Bain PG, Colebatch JG et al. (1993) A positron emission tomography study of essential tremor: evidence for overactivity of cerebellar connections. Ann Neurol 34: 82–90CrossRefPubMedGoogle Scholar
  8. Kuhlenbaumer G, Hopfner F, Deuschl G (2014) Genetics of essential tremor: meta-analysis and review. Neurology 82: 1000–1007CrossRefPubMedGoogle Scholar
  9. Louis ED, Ferreira JJ (2010) How common is the most common adult movement disorder? Update on the worldwide prevalence of essential tremor. Mov Disord 25: 534–541CrossRefPubMedGoogle Scholar
  10. Merner ND, Girard SL, Catoire H et al. (2012) Exome sequencing identifies FUS mutations as a cause of essential tremor. Am J Hum Genet 91: 313–319CrossRefPubMedGoogle Scholar
  11. Raethjen J, Deuschl G (2012) The oscillating central network of essential tremor. Clin Neurophysiol 123: 61–64CrossRefPubMedGoogle Scholar
  12. Rehncrona S, Johnels B, Widner H, Tornqvist AL, Hariz M, Sydow O (2003) Long-term efficacy of thalamic deep brain stimulation for tremor: double-blind assessments. Mov Disord 18: 163–170CrossRefGoogle Scholar
  13. Stefansson H, Steinberg S, Petursson H et al. (2009) Variant in the sequence of the LINGO1 gene confers risk of essential tremor. Nat Genet 41: 277–279CrossRefPubMedPubMedCentralGoogle Scholar
  14. Thier S, Lorenz D, Nothnagel M et al. (2012 )Polymorphisms in the glial glutamate transporter SLC1A2 are associated with essential tremor. Neurology 79: 243–248CrossRefPubMedPubMedCentralGoogle Scholar
  15. Unal Gulsuner H, Gulsuner S, Mercan FN et al. (2014) Mitochondrial serine protease HTRA2 p.G399S in a kindred with essential tremor and Parkinson disease. Proc Natl Acad Sci USA 111 (51): 18285–90. doi: 10.1073/pnas

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbHRuhr-Universität BochumBochumDeutschland
  2. 2.Neurologische Klinik und PoliklinikUniversitätsklinikum WürzburgWürzburgDeutschland
  3. 3.Klinik für NeurologieAgaplesion Bethesda Krankenhaus WuppertalWuppertalDeutschland
  4. 4.Klinik für Neurologie, NeurozentrumChristian-Albrechts-Universität KielKielDeutschland

Personalised recommendations