• J. GeithnerEmail author
  • F. von PodewilsEmail author
  • A. StrzelczykEmail author
  • E.-L. von RüdenEmail author


Epileptische Anfälle sind ein häufiges klinisches Phänomen, und die Lebenszeitprävalenz beträgt bis zu 5%. Die Diagnose einer Epilepsie wird bei dauerhafter Neigung zur Entwicklung epileptischer Anfälle gestellt und zieht die Behandlung mit Antikonvulsiva nach sich. In diesem Kapitel werden die Einteilung in die häufigen Epilepsiesyndrome, die Diagnostik mittels Elektroenzephalographie und Magnetresonanztomographie, die Wirkungsweise von Antikonvulsiva sowie der Status epilepticus vorgestellt. Letzteres ist ein klinischer Notfall, da ab einer Dauer von 5 Minuten die Wahrscheinlichkeit für ein spontanes Sistieren der Anfälle sinkt.


  1. Alldredge BK, Gelb AM, Isaacs SM et al. (2001) A comparison of lorazepam, diazepam, and placebo for the treatment of out-of-hospital status epilepticus. N Engl J Med 345: 631–637PubMedCrossRefGoogle Scholar
  2. Bancaud J (1969) Physiopathogenesis of generalized epilepsies of organic nature (stereoencephalographic study). In: Gastaut H, Jasper HH, Bancaud J et al. (eds) The Physiopathogenesis of the Epilepsies. Charles C Thomas, Springfield, IL:, pp 158–185Google Scholar
  3. Barrese V, Miceli F, Soldovieri MV et al. (2010) Neuronal potassium channel openers in the management of epilepsy: role and potential of retigabine. Clin Pharmacol 2: 225–236Google Scholar
  4. Bauer S, Norwood BA (2013) What can we learn from animal models of convulsive status epilepticus? Z Epileptol 26: 70–74CrossRefGoogle Scholar
  5. Blumenfeld H (2005) Cellular and network mechanisms of spike-wave seizures. Epilepsia 46 Suppl 9: 21–33PubMedCrossRefGoogle Scholar
  6. Brazel H, Reif PS, Bauer S et al. (2016) Erfolgreiche Epilepsiechirurgie bei seit über 20 Jahren therapierefraktärer Temporallappenepilepsie und multiplen Voreingriffen. Z Epileptol 29: 156–160CrossRefGoogle Scholar
  7. Brodie MJ, Barry SJ, Bamagous GA et al. (2012) Patterns of treatment response in newly diagnosed epilepsy. Neurology 78: 1548–1554PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bumanglag AV, Sloviter RS (2008) Minimal latency to hippocampal epileptogenesis and clinical epilepsy after perforant pathway stimulation-induced status epilepticus in awake rats. J Compar Neurol 510: 561–580PubMedPubMedCentralCrossRefGoogle Scholar
  9. Buzsaki G (1991) The thalamic clock: emergent network properties. Neuroscience 41: 351–364PubMedCrossRefGoogle Scholar
  10. Cain SM, Snutch TP (2012) Voltage-Gated Calcium Channels in Epilepsy. In: Noebels JL, Avoli M, Rogawski MA et al. (eds) Jasper’s Basic Mechanisms of the Epilepsies 4th edition. Bethesda (MD): National Center for Biotechnology Information (US)CrossRefGoogle Scholar
  11. Chen JW, Wasterlain CG (2006) Status epilepticus: pathophysiology and management in adults. Lancet Neurol 2006; 5: 246–256PubMedCrossRefGoogle Scholar
  12. Chen Y, Lu J, Pan H et al. (2003) Association between genetic variation of CACNA1H and childhood absence epilepsy. Ann Neurol 54: 239–243PubMedCrossRefGoogle Scholar
  13. Conner KP, Woods C, Atkins WM (2011) Interactions of Cytochrome P450s with their Ligands. Arch Biochem Biophys 507: 56–65PubMedCrossRefGoogle Scholar
  14. Cossette P, Lachance-Touchette P, Rouleau GA (2012) Mutated GABAA receptor subunits in idiopathic generalized epilepsy. In: Noebels JL, Avoli M, Rogawski MA et al. (eds) Jasper’s Basic Mechanisms of the Epilepsies, 4th edn. National Center for Biotechnology Information (US), Bethesda (MD)Google Scholar
  15. Dingledine R (2012) Glutamatergic Mechanisms Related to Epilepsy: Ionotropic Receptors. In: Noebels JL, Avoli M, Rogawski MA et al. (eds) Jasper’s Basic Mechanisms of the Epilepsies, 4th edn. National Center for Biotechnology Information (US), Bethesda (MD)Google Scholar
  16. Duvernoy H, Cattin F, Risold P (2013) The Human Hippocampus. Functional Anatomy, Vascularization and Serial Sections with MRI, 4th edn. Springer, Berlin Heidelberg New York, p 18CrossRefGoogle Scholar
  17. French JA, Williamson PD, Thadani VM et al. (1993) Characteristics of medial temporal lobe epilepsy: I. Results of history and physical examination. Ann Neurol 34: 774–780PubMedCrossRefGoogle Scholar
  18. Gloor P, Avoli M, Kostopoulos G (1990) Thalamocortical relationships in generalized epilepsy with bilaterally synchronous spike-and-wave discharge. In: Avoli M, Gloor P, Kostopoulos G et al. (eds) Generalized epilepsy: neurobiological approaches. Birkhauser, Boston, MA:, pp 190–212CrossRefGoogle Scholar
  19. Gloor P (1969) Neurophysiological bases of generalized seizures termed centrencephalic. In: Gastaut H, Jasper HH, Bancaud J et al. (eds) The physiopathogenesis of the epilepsies. Charles C Thomas, Springfield, IL, pp 209–236Google Scholar
  20. Hanada T, Hashizume Y, Tokuhara N et al. (2011) Perampanel: A novel, orally active, noncompetitive AMPA-receptor antagonist that reduces seizure activity in rodent models of epilepsy. Epilepsia 52: 1331–1340PubMedCrossRefGoogle Scholar
  21. Heron SE, Khosravani H, Varela D et al. (2007) Extended spectrum of idiopathic generalized epilepsies associated with CACNA1H functional variants. Ann Neurol 62: 560–568PubMedCrossRefGoogle Scholar
  22. Huguenard JR, McCormick DA (2007) Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends Neurosci 30: 350–356PubMedCrossRefGoogle Scholar
  23. Jallon P, Latour P (2005) Epidemiology of idiopathic generalized epilepsies. Epilepsia 46 Suppl 9: 10–14PubMedCrossRefGoogle Scholar
  24. Jasper HH, Droogleever-Fortuyn J (1946) Experimental studies on the functional anatomy of petit mal epilepsy. Res Publ Ass Res Nerv Ment Dis 26: 272–298Google Scholar
  25. Jasper HH, Kershman J (1941) Electroencephalographic classification of the epilepsies. Arch Neurol Psychiat 45: 903–943CrossRefGoogle Scholar
  26. Kapur J, Macdonald RL (1997) Rapid seizure-induced reduction of benzodiazepine and Zn2+ sensitivity of hippocampal dentate granule cell GABAA receptors. J Neurosci 17: 7532–7540PubMedPubMedCentralCrossRefGoogle Scholar
  27. Knake S, Rosenow F, Vescovi M et al. (2001) Incidence of status epilepticus in adults in Germany: a prospective, population-based study. Epilepsia 42: 714–718PubMedCrossRefGoogle Scholar
  28. Kwan P, Arzimanoglou A, Berg AT et al. (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51: 1069–1077PubMedCrossRefGoogle Scholar
  29. Lorente de Nó R (1934) Studies on the structure of the cerebral cortex. II. Continuation of the study of the Ammonic system. J Psychol Neurol 46: 113–177Google Scholar
  30. Löscher W, Rogawaski MA (1994) Epilepsy. In: Lodge D, Danysz W, Parsons CG, Hrsg. Ionotropic glutamate receptors as therapeutic target. Graham Publ, Johnson City, TN, pp 91–132Google Scholar
  31. Löscher W, Schmidt D (1994) Strategies in antiepileptic drug development: is rational drug design superior to random screening and structural variation? Epilepsy Res 17: 95–134PubMedCrossRefGoogle Scholar
  32. Löscher W (1989) GABA and the epilepsies. Experimental and clinical considerations. In: Bowery NG, Nisticò G (eds) Basic research and clinical applications. Pythagora Press, Rome, pp 260–300Google Scholar
  33. Lowenstein DH, Alldredge BK (1993) Status epilepticus at an urban public hospital in the 1980s. Neurology 43: 483–488PubMedCrossRefGoogle Scholar
  34. Lowenstein DH, Bleck T, Macdonald RL (1999) It’s time to revise the definition of status epilepticus. Epilepsia 40: 120–122PubMedCrossRefGoogle Scholar
  35. Lu Y, Waltz S, Stenzel K et al. (2008) Photosensitivity in epileptic syndromes of childhood and adolescence. Epileptic Disorders: international epilepsy journal with videotape 10: 136–143Google Scholar
  36. Mantegazza M, Catterall WA (2012) Voltage-Gated Na+ Channels: Structure, Function, and Pathophysiology. In: Noebels JL, Avoli M, Rogawski MA et al. (eds) Jasper’s Basic Mechanisms of the Epilepsies. 4th ednNational Center for Biotechnology Information (US), Bethesda (MD)Google Scholar
  37. Meador KJ, Baker GA, Browning N et al. (2009) Cognitive Function at 3 Years of Age after Fetal Exposure to Antiepileptic Drugs. New Engl J Med 360: 1597–1605PubMedCrossRefGoogle Scholar
  38. Meencke HJ, Janz D (1985) The significance of microdysgenesia in primary generalized epilepsy: an answer to the considerations of Lyon and Gastaut. Epilepsia 26: 368–371PubMedCrossRefGoogle Scholar
  39. Meeren HK, Pijn JP, Van Luijtelaar EL et al. (2002) Cortical focus drives widespread corticothalamic networks during spontaneous absence seizures in rats. J Neurosci 22: 1480–1495PubMedCrossRefGoogle Scholar
  40. Meier C, Kraenzlin ME (2011) Epilepsie, Antiepileptika und Osteoporose. Epileptologie 28: 42–50Google Scholar
  41. Morrow J, Russell A, Guthrie E et al. (2006) Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiat 77: 193–198CrossRefGoogle Scholar
  42. Noebels JL. (2003) The biology of epilepsy genes. Annu Rev Neurosci 26: 599–625Google Scholar
  43. Penfield W, Jasper HH (1954) Epilepsy and the functional anatomy of the human brain. Little Brown & Co., Boston, MA.Google Scholar
  44. Pitkänen A, Schwartzkroin PA, Moshe SL (2006) Models of seizures and epilepsy. Elsevier, LondonCrossRefGoogle Scholar
  45. Powell KL, Cain SM, Ng C et al. (2009) A Cav3.2 T-type calcium channel point mutation has splice-variant-specific effects on function and segregates with seizure expression in a polygenic rat model of absence epilepsy. J Neurosci 29: 371–380PubMedCrossRefGoogle Scholar
  46. Reimers A, Brodtkorb E, Sabers A (2015) Interactions between hormonal contraception and antiepileptic drugs: Clinical and mechanistic considerations. Seizure 28: 66–70PubMedCrossRefGoogle Scholar
  47. Rivera C, Voipio J, Kaila K (2005) Two developmental switches in GABAergic signalling: the K+-Cl- cotransporter KCC2 and carbonic anhydrase CAVII. J Physiol 562: 27–36PubMedPubMedCentralCrossRefGoogle Scholar
  48. Rogawski MA (2011) Revisiting AMPA Receptors as an Antiepileptic Drug Target. Epilepsy Curr 11: 56–63PubMedPubMedCentralCrossRefGoogle Scholar
  49. Rossetti AO, Logroscino G, Milligan TA et al. (2008) Status Epilepticus Severity Score (STESS): a tool to orient early treatment strategy. J Neurol 255: 1561–1566PubMedCrossRefGoogle Scholar
  50. Scharrer E (1940) Vascularization and vulnerability of the cornu ammonis in the opossum. Arch Neurol Psychiat 44: 483–506CrossRefGoogle Scholar
  51. Scheffer IE, Berkovic S, Capovilla G et al. (2017) ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58: 512–521Google Scholar
  52. Schmidt RF, Lang F, Heckmann M (Hrsg) (2010) Physiologie des Menschen, 31. Aufl. Springer, Berlin Heidelberg New York, S 165Google Scholar
  53. Singh B, Monteil A, Bidaud I et al. (2007) Mutational analysis of CACNA1G in idiopathic generalized epilepsy. Mutation in brief #962. Online. Human Mutation 28: 524–525PubMedCrossRefGoogle Scholar
  54. Strzelczyk A, Ansorge S, Hapfelmeier J et al. (2017) Costs, length of stay, and mortality of super-refractory status epilepticus: A population-based study from Germany. Epilepsia 58: 1533–1541PubMedCrossRefGoogle Scholar
  55. Strzelczyk A, Gaul C, Rosenow F et al. (2017) Visuelle Auren im Grenzgebiet zwischen Epilepsie und Migräne. Z Epileptol 30: 21–27CrossRefGoogle Scholar
  56. Strzelczyk A, Kay L, Kellinghaus C et al. (2017) Concepts for Prehospital and Initial In-hospital Therapy of Status Epilepticus. Neurol Int Open 01: E217-E223CrossRefGoogle Scholar
  57. Talley EM, Solorzano G, Depaulis A et al. (2000) Low-voltage-activated calcium channel subunit expression in a genetic model of absence epilepsy in the rat. Brain Res Mol Brain Res 75: 159–165PubMedCrossRefGoogle Scholar
  58. Trinka E, Cock H, Hesdorffer D et al. (2015) A definition and classification of status epilepticus – Report of the ILAE Task Force on Classification of Status Epilepticus. Epilepsia 56: 1515–1523PubMedCrossRefGoogle Scholar
  59. Tsakiridou E, Bertollini L, de Curtis M et al. (1995) Selective increase in T-type calcium conductance of reticular thalamic neurons in a rat model of absence epilepsy. J Neurosci 15:3110–3117PubMedCrossRefGoogle Scholar
  60. Walker MC, Kullmann DM (2012) Tonic GABAA Receptor-Mediated Signaling in Epilepsy. In: Noebels JL, Avoli M, Rogawski MA et al. (eds) Jasper’s Basic Mechanisms of the Epilepsies, 4th edn. National Center for Biotechnology Information (US), Bethesda (MD)Google Scholar
  61. Weber YG, Sander T, Lerche H (2011) Idiopathische generalisierte Epilepsien. Z Epileptol 24: 100–107CrossRefGoogle Scholar
  62. Wellmer J, Quesada CM, Rothe L et al. (2013) Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia 54: 1977–1987PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Deutsche Gesellschaft für EpileptologieBerlinDeutschland
  2. 2.Klinik und Poliklinik für Neurologie, EpilepsiezentrumUniversitätsmedizin GreifswaldGreifswaldDeutschland
  3. 3.Epilepsiezentrum Frankfurt Rhein-MainUniversitätsklinikum FrankfurtFrankfurt am MainDeutschland
  4. 4.Inst. für Pharmakologie, Toxikologie und PharmazieLudwig-Maximilians-Universität MünchenMünchenDeutschland

Personalised recommendations