Advertisement

Entzündliche Erkrankungen

  • C. WarnkeEmail author
  • J. HavlaEmail author
  • M. KitzrowEmail author
  • A.-S. BiesalskiEmail author
  • S. KnaussEmail author

Zusammenfassung

Aus dem breiten Spektrum entzündlicher ZNS-Erkrankungen werden in diesem Kapitel beispielhaft pathophysiologische Mechanismen erregervermittelter (bakterieller und viraler), akut verlaufender Infektionen des zentralen Nervensystems wie auch autoimmun vermittelter Entzündungen (multiple Sklerose, limbische Enzephalitiden) besprochen. Neben allgemeinen und erregerspezifischen Mechanismen einer Infektion werden im Kontext der autoimmun vermittelten Erkrankungen grundlegende immunologische Ansätze bzw. Prinzipien unterschiedlicher Therapieverfahren beleuchtet. Auch Komplikationen dieser häufig schwerwiegend verlaufenden Erkrankungen werden erörtert.

Literatur

Literatur zu Abschn. 2.1

  1. Andlauer TFM, Buck D, Antony G et al. (2016) Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation. Sci Adv 2: (6): e1501678Google Scholar
  2. Axisa P-P, Hafler DA (2016) Multiple sclerosis. Curr Opin Neurol 29: (3): 345–353PubMedGoogle Scholar
  3. Beecham AH, Patsopoulos NA et al. (2013) International Multiple Sclerosis Genetics Consortium (IMSGC) Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet 45 (11): 1353–1360Google Scholar
  4. Berer K, Gerdes LA, Cekanaviciute E et al. (2017) Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proceedings of the National Academy of Sciences. 114 (40): 10719–10724Google Scholar
  5. Geraldes R, Ciccarelli O, Barkhof F et al., on behalf of the Magnims study group (2018) The current role of MRI in differentiating multiple sclerosis from its imaging mimics. Nature Rev Neurol 14: 188–213 (https://www.nature.com/articles/nrneurol.2018.14#f1)
  6. Goodin DS (2016) The epidemiology of multiple sclerosis: insights to a causal cascade. Handb Clin Neurol 138: 173–206Google Scholar
  7. Haase S, Haghikia A, Gold R et al. (2018) Dietary fatty acids and susceptibility to multiple sclerosis. Mult Scler. 24 (1): 12–16PubMedGoogle Scholar
  8. Havla J, Warnke C, Derfuss T, Kappos L, Hartung HP, Hohlfeld R (2016) Interdisciplinary Risk Management in the Treatment of Multiple Sclerosis. Dtsch Ärztebl Int 113 (51–52): 879–886Google Scholar
  9. Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2016a) The search for the target antigens of multiple sclerosis, part 1: autoreactive CD4+ T lymphocytes as pathogenic effectors and therapeutic targets. Lancet Neurol 15 (2): 198–209PubMedGoogle Scholar
  10. Hohlfeld R, Dornmair K, Meinl E, Wekerle H (2016b). The search for the target antigens of multiple sclerosis, part 2: CD8+T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol 15 (3): 317–331PubMedGoogle Scholar
  11. Hohlfeld R, Wekerle H (2015) Multiple sclerosis and microbiota. From genome to metagenome? Nervenarzt 86 (8): 925–933PubMedGoogle Scholar
  12. Jarius S, Eichhorn P, Franciotta D et al. (2017) The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature. J Neurol 264 (3): 453–466PubMedGoogle Scholar
  13. Jarius S, Ruprecht K, Kleiter I et al. (2016) MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 2: Epidemiology, clinical presentation, radiological and laboratory features, treatment responses, and long-term outcome. J Neuroinflammation 13 (1): 280Google Scholar
  14. Jarius S, Eichhorn P, Franciotta D et al. (2017) The MRZ reaction as a highly specific marker of multiple sclerosis: re-evaluation and structured review of the literature. J Neurol 264 (3): 453–466. doi:10.1007/s00415-016-8360-4PubMedGoogle Scholar
  15. Kalincik T, Guttmann CR, Krasensky J et al. (2013) Multiple sclerosis susceptibility loci do not alter clinical and MRI outcomes in clinically isolated syndrome. Genes Immun 14: 244–248Google Scholar
  16. Kip M, Schönfelder T, Bleß HH (Hrsg) (2016) Weißbuch Multiple Sklerose. Versorgungssituation in Deutschland. Springer, Berlin Heidelberg New YorkGoogle Scholar
  17. Kurtzke JF (1983) Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 33 (11): 1444–1452PubMedGoogle Scholar
  18. Lehmann-Horn K, Wang S-Z, Sagan SA, Zamvil SS, Büdingen von HC (2016) B cell repertoire expansion occurs in meningeal ectopic lymphoid tissue. JCI Insight 1 (20)Google Scholar
  19. Lennon VA, Wingerchuk DM, Kryzer TJ et al. (2004) A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 364 (9451): 2106–2112. doi: 10.1016/S0140–6736 (04)17551-X
  20. Linn J, Wiesmann M, Brückmann H (Hrsg) (2011) Atlas der klinischen Neuroradiologie des Gehirns. Springer, Berlin Heidelberg New York, S 379Google Scholar
  21. Lucchinetti CF, Brück W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47: 707–717Google Scholar
  22. McDonald WI, Compston A, Edan G et al. (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50 (1): 121–127Google Scholar
  23. Mentis A-FA, Dardiotis E, Grigoriadis N, Petinaki E, Hadjigeorgiou GM (2017) Viruses and endogenous retroviruses in multiple sclerosis: From correlation to causation. Acta Neurol Scand 136 (6): 606–616PubMedGoogle Scholar
  24. Montalban X, Hauser SL, Kappos L et al. (2017) Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N Engl J Med 376 (3): 209–220PubMedGoogle Scholar
  25. Ontaneda D, Thompson AJ, Fox RJ, Cohen JA (2017) Progressive multiple sclerosis: prospects for disease therapy, repair, and restoration of function. Lancet 389 (10076): 1357–1366Google Scholar
  26. Paulus W, Schröder JM (Hrsg) (2012) Pathologie/Neuropathologie. Springer, Berlin Heidelberg New YorkGoogle Scholar
  27. Petzold A, Balcer LJ, Calabresi PA et al. (2017) Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis. Lancet Neurol 16 (10): 797–812Google Scholar
  28. Polman CH, O’Connor PW, Havrdova E et al. (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354 (9): 899–910Google Scholar
  29. Polman CH, Reingold SC, Banwell B et al. (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69 (2): 292–302PubMedPubMedCentralGoogle Scholar
  30. Reich DS, Lucchinetti CF, Calabresi PA (2018) Multiple sclerosis. Longo DL (ed) N Engl J Med 378 (2): 169–180Google Scholar
  31. Schumacher A-M, Mahler C, Kerschensteiner M (2017) Pathologie und Pathogenese der progredienten Multiplen Sklerose: Konzepte und Kontroversen. Aktuelle Neurologie 44 (07): 476–488Google Scholar
  32. Thompson AJ, Banwell BL, Barkhof F et al. (2018) Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 17 (2): 162–173Google Scholar
  33. Tischner D, Reichardt HM (2007) Glucocorticoids in the control of neuroinflammation. Mol Cell Endocrinol 15;275 (1–2): 62–70PubMedGoogle Scholar
  34. Warnke C, Menge T, Hartung HP et al. (2010) Natalizumab and progressive multifocal leukoencephalopathy: what are the causal factors and can it be avoided? Arch Neurol 67 (8): 923–930Google Scholar
  35. Warnke C, Kieseier BC, Hartung HP (2013) Biotherapeutics for the treatment of multiple sclerosis: hopes and hazards. J Neural Transm (Vienna) 120 Suppl 1 (S1): 55–60Google Scholar
  36. Warnke C, Olsson T, Hartung HP (2015) PML: The dark side of immunotherapy in multiple sclerosis. Trends Pharmacol Sci 36 (12): 799–801PubMedGoogle Scholar
  37. Warnke C, Wattjes MP, Adams O et al. (2016) Progressive multifocal leukoencephalopathy. Nervenarzt 87 (12): 1300–1304PubMedGoogle Scholar

Literatur zu Abschn. 2.2

  1. Al Bekairy AM, Al Harbi S, Alkatheri AM et al. (2014) Bacterial meningitis: An update review. Afr J Pharm Pharmacol 8: (18): 469–478Google Scholar
  2. Armulik A, Abramsson A, Betsholtz C (2005) Endothelial/pericyte interactions. Circ Res 97: 512–523PubMedGoogle Scholar
  3. Banerjee A, Kim B, Carmona E et al. (2011) Bacterial Pili exploit integrin machinery to promote immune activation and efficient blood-brain barrier penetration. Nat. Commun 2: 462Google Scholar
  4. Barichello T, Pereira J, Savi G et al. (2011) A kinetic study of the cytokine/chemokines levels and disruption of blood–brain barrier in infant rats after pneumococcal meningitis. J. Neuroimmunol 233: (1–2): 12–17PubMedGoogle Scholar
  5. Borrow R, Abad R, Trotter C et al. (2013) Effectiveness of meningococcal serogroup C vaccine programmes. Vaccine 31: 4477–4486PubMedGoogle Scholar
  6. Brouwer MC, Tunkel AR, van de Beek D (2010) Epidemiology, diagnosis and antimicrobial treatment of acute bacterial meningitis. Clin Microbiol Rev 23: (3): 467–492PubMedPubMedCentralGoogle Scholar
  7. Brouwer M, McIntyre P, Prasad K, van de Beek D (2015) Corticosteroids for acute bacterial meningitis, Cochrane. Database. Syst. Rev 9: CD004405Google Scholar
  8. Carmignoto G, Gomez-Gonzalo M (2010) The contribution of astrocyte signalling to neurovascular coupling. Brain Res Rev 63: 138–148.PubMedGoogle Scholar
  9. Castelblanco RL, Lee M, Hasbun R (2014) Epidemiolgy of bacterial meningitis in the USA from 1997 to 2010: a population-based observational study. Lancet Infect Dis 14: 813–819PubMedGoogle Scholar
  10. Collins S, Vickers A, Ladhani SN et al. (2016) Clinical and molecular epidemiology of childhood invasive nontypeable Haemophilus influenzae disease in England and Wales. Pediatr Infect Dis J 35: (3): e7684PubMedGoogle Scholar
  11. Coureuil M, Join-Lambert OF, Lécuyer H, Bourdoulous S, Marullo S, Nassif X (2012) Mechanism of meningeal invasion by Neisseria meningitidis. Virulence 3 (2): 164–172. doi: 10.4161/viru.18639PubMedPubMedCentralGoogle Scholar
  12. Coureuil M, Lécuyer H, Bourdoulous S, Nassif X (2017) A journey into the brain: insight into how bacterial pathogens cross blood-brain barriers. Nat Rev Microbiol 15 (3): 149–159. doi: 10.1038/nrmicro.2016.178PubMedGoogle Scholar
  13. Daneman R (2012) The blood-brain barrier in health and disease. Ann Neurol 72: 648–672PubMedGoogle Scholar
  14. De Gans J, van de Beek D (2002) Dexamethason in adults with bacterial meningitis. New Engl J Med 347: (20): 1549–1556Google Scholar
  15. European Centre for Disease Prevention and Control (2014) Annual Epidemiological Report. Vaccine-preventable diseases – invasive bacterial diseases. Stockholn: ECDC; 2015Google Scholar
  16. European Centre for Disease Prevention and Control (2016) Annual epidemiological report 2016 – Invasive pneumococcal disease. [Internet]. ECDC, StockholmGoogle Scholar
  17. Haj-Yasein N, Vindedal G, Eilert-Olsen M et al. (2011) Glial-conditional deletion of aquaporin-4 (Aqp4) reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet. Proc Natl Acad Sci 108: 17815–17820Google Scholar
  18. Heckenberg S, Brouwer M, van der Ende A, van de Beek D (2012) Adjunctive dexamethasone in adults with meningococcal meningitis, Neurology 79: 1563–1569PubMedGoogle Scholar
  19. Htar MT, Christopoulou D, Schmitt HJ (2015) Pneumococcal serotype evolution in Western Europe. BMC Infect Dis 15: 419Google Scholar
  20. Kim KS (2006) Microbial translocation of the blood-brain barrier. Int J Parasitol 36: 607–614PubMedGoogle Scholar
  21. Kim KS (2008) Mechanisms of microbial traversal of the blood–brain barrier. Nat Rev Microbiol 6: 625–634PubMedPubMedCentralGoogle Scholar
  22. Kim S, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol 209: (2): 139–151PubMedGoogle Scholar
  23. Koedel U, Pfister HW (1999) Oxidative stress in bacterial meningitis. Brain Pathol 9: 57–67Google Scholar
  24. Nau R, Gerber J (2003) Neuronale Schäden bei der bakteriellen Meningitis – Entstehungsmechanismen und mögliche Konsequenzen für die Behandlung. Neuroforum 1/03Google Scholar
  25. Pfister HW, Borasio G, Dirnagl U et al. (1992) Cerebrovascular complications of bacterial meningitis in adults. Neurology 42: 1497–1504PubMedGoogle Scholar
  26. Prevention and Control of Meningococcal Diseases: Recommendations of the advisory committee on immunization practices (ACIP). Recommendations and reports. Prepared by Cohn AC, McNeil JR, Clark TA et al. 22 March 2013/62: (RR02): 1–2Google Scholar
  27. Puig C, Grau I, Marti S et al. (2014) Clinical and Molecular epidemiology of Haemophilus influenzae causing invasive disease in adult patients. PloS one 9: (11): e112711PubMedPubMedCentralGoogle Scholar
  28. RKI – Robert Koch-Institut (2016) Epidemiologisches Bulletin, Ausgabe 43/2016. DOI 10.17886/EpiBull-2016–064.2
  29. Van Sorge N, Doran K (2012) Defense at the border: the blood-brain barrier versus bacterial foreigners. Future Microbiol 7: (3): 383–394Google Scholar
  30. Vogel U, Taha M-K, Vazquez J et al. (2013) Predicted strain coverage of a meningococcal multicomponent vaccine (4CMenB) in Europe: a qualitative and quantitative assessment. Lancet Infect Dis 13: (5): 416–425Google Scholar

Literatur zu Abschn. 2.3

  1. Armangue T, Leypoldt F, Málaga I, Raspall-Chaure M, Marti I et al. (2014) Herpes simplex virus encephalitis is a trigger of brain autoimmunity. Ann Neurol 75 (2): 317–23PubMedPubMedCentralGoogle Scholar
  2. Bradshaw MJ, Venkatesan A (2016) Herpes simplex virus-1 encephalitis in adults: Pathophysiology, diagnosis, management. Neurotherapeutics 13: 493–508PubMedPubMedCentralGoogle Scholar
  3. DeBiasi RL, Kleinschmidt-DeMasters BK, Richardson-Burns S, Tyler KL (2002) Central Nervous System Apoptosis in Human Herpes Simplex Virus and Cytomegalovirus Encephalitis. The J Infectious Diseases 186: 1547–57PubMedGoogle Scholar
  4. Hacohen Y, Deiva K, Pettingill P, Waters P, Siddiqui A, Chretien P, Menson E, Lin JP, Tardieu M, Vincent A, Lim MJ (2014) N-methyl-D-aspartate receptor antibodies in post-herpes simplex virus encephalitis neurological relapse. Mov Disord 29 (1): 90–6.PubMedGoogle Scholar
  5. Linn J, Wiesmann M, Brückmann H (Hrsg) (2011) Atlas der klinischen Neuroradiologie des Gehirns. Springer, Berlin Heidelberg New YorkGoogle Scholar
  6. Martinez-Torres F, Menon S, Pritsch M, Victor N, Jenetzky E, Jensen K, Schielke E, Schmutzhard E, de Gans J, Chung CH, Luntz S, Hacke W, Meyding-Lamadé U, GACHE Investigators (2008) Protocol for German trial of Acyclovir and corticosteroids in Herpes-simplex-virus-encephalitis (GACHE): a multicenter, multinational, randomized, double-blind, placebo-controlled German, Austrian and Dutch trial. BMC Neurol 29;8: 40Google Scholar
  7. Meyding-Lamadé U et al. (2015) DGN-Leitlinie „Virale Meningoenzephalitis”. https://www.dgn.org/images/red_leitlinien/LL_2014/PDFs_Download/030100_DGN_LL_virale_meningoenzephalitis.pdf
  8. Nosadini M, Mohammad SS, Corazalla F, Ruga EM, Kothur K, Perilongo G, Frigo AC, Toldo I, Dale RC, Sartori S (2017) Herpes simplex virus-induced anti-N-methyl-D-aspartate receptor encephalitis: a systematic literature review with analysis of 43 cases. Dev Med Child Neurol 59: 796–805Google Scholar
  9. Prüss H, Finke C, Höltje M, Hofmann J, Klingbeil C, Probst C, Borowski K, Ahnert-Hilger G, Harms L, Schwab JM, Ploner CJ, Komorowski L, Stoecker W, Dalmau J, Wandinger KP (2012) N-methyl-D-aspartate receptor antibodies in herpes simplex encephalitis. Ann Neurol 72 (6): 902–11PubMedPubMedCentralGoogle Scholar
  10. Rabinstein AA (2017) Herpes Virus Encephalitis in Adults. Current knowledge and old myths Neurol Clin 35: 695–705PubMedGoogle Scholar
  11. Sköldenberg B, Aurelius E, Hjalmarsson A, Sabri F, Forsgren M, Andersson B, Linde A, Strannegård O, Studahl M, Hagberg L, Rosengren L (2005) Incidence and pathogenesis of clinical relapse after herpes simplex encephalitis in adults. J Neurol 253 (2): 163–70PubMedGoogle Scholar
  12. Smith G (2012) Herpesvirus Transport to the nervous system and back again. Annu Rev Microbiol 66: 1–28PubMedGoogle Scholar
  13. Suerbaum S et al. (2016) Medizinische Mikrobiologie und Infektiologie, 2. Aufl. Springer, Berlin Heidelberg New YorkGoogle Scholar
  14. Whitley R, Kimberlin DW, Prober CG (2007) Pathogenesis and disease. In: rvin A, Campidelli-Fiume G, Mocarski E, Moore PS, Roizman B,Whitley R (eds) Human herpesviruses: biology, therapy and immunoprophylaxis. Cambridge University Press, Cambridge, pp 589–601Google Scholar
  15. Wildemann B, Ehrhart K, Storch-Hagenlocher B, Meyding-Lamadé U, Steinvorth S, Hacke W, Haas J (1997) Quantitation of Herpes Simplex Virus Type 1 DNA in cells of cerebrospinal fluid of patients with herpes simplex virus encephalitis. Neurology 48: 1341–1346PubMedGoogle Scholar
  16. Zhang SY, Casanova JL (2015) Inborn errors underlying herpes simplex encephalitis: From TLR3 to IRF3. Exp Med 212 (9): 1342–1343PubMedPubMedCentralGoogle Scholar
  17. Zhang SY, Jouanguy E, Ugolini S et al. (2007) TLR3 deficiency in patients with herpes simplex encephalitis. Science 317: 1522–1527Google Scholar

Literatur zu Abschn. 2.4

  1. Albert ML et al. (1998) Tumor-specific killer cells in paraneoplastic cerebellar degeneration. Nature Med 4 (11): 1321–1324PubMedGoogle Scholar
  2. BaumgartnerA et al. (2013) Cerebral FDG-PET and MRI findings in autoimmune limbic encephalitis: correlation with autoantibody types. J Neurol 260 (11): 2744–2753PubMedGoogle Scholar
  3. Bien CG et al. (2012) Immunopathology of autoantibody-associated encephalitides: clues for pathogenesis. Brain 135 (5): 1622–1638PubMedGoogle Scholar
  4. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, Dessain SK, Rosenfeld MR, Balice-Gordon R, Lynch DR (2008) Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 7 (12): 1091–1098PubMedPubMedCentralGoogle Scholar
  5. Darnell RB., DeAngelis LM (1993) Regression of small-cell lung carcinoma in patients with paraneoplastic neuronal antibodies. Lancet 341 (8836): 21–22Google Scholar
  6. Finke, C et al. (2012) N-methyl- D-aspartate receptor antibodies in herpes simplex encephalitis. Ann Neurol 72 (6): 902–911Google Scholar
  7. Graus F et al. (2016) A clinical approach to diagnosis of autoimmune encephalitis. Lancet 15 (4): 391–404Google Scholar
  8. Graus F, Saiz A, Dalmau, J (2009) Antibodies and neuronal autoimmune disorders of the CNS. J Neurol 257 (4): 509–517PubMedGoogle Scholar
  9. Heine J et al. (2015) Imaging of autoimmune encephalitis–Relevance for clinical practice and hippocampal function. Neuroscience 309: 68–83. doi: 10.1016/j.neuroscience.2015.05.037PubMedGoogle Scholar
  10. Keime-Guibert F et al. (1999) Clinical outcome of patients with anti-Hu-associated encephalomyelitis after treatment of the tumor. Neurology 53 (8): 1719–1719PubMedGoogle Scholar
  11. Martinez-Hernandez E et al. (2011) Analysis of complement and plasma cells in the brain of patients with anti-NMDAR encephalitis. Neurology 77 (6): 589–593PubMedPubMedCentralGoogle Scholar
  12. Mikasova L et al. (2012) Disrupted surface cross-talk between NMDA and Ephrin-B2 receptors in anti-NMDA encephalitis. Brain 135 (5): 1606–1621PubMedGoogle Scholar
  13. Monstad SE et al. (2004) Hu and voltage-gated calcium channel (VGCC) antibodies related to the prognosis of small-cell lung cancer. J Clin Oncol 22 (5): 795–800PubMedGoogle Scholar
  14. Moscato EH et al. (2014) Acute mechanisms underlying antibody effects in anti-N-methyl-D-aspartate receptor encephalitis. Ann Neurol 76 (1): 108–119PubMedPubMedCentralGoogle Scholar
  15. Ohkawa T et al. (2013) Autoantibodies to Epilepsy-Related LGI1 in Limbic Encephalitis Neutralize LGI1-ADAM22 Interaction and Reduce Synaptic AMPA Receptors. J Neuroscience 33 (46): 18161–18174PubMedGoogle Scholar
  16. Orange D et al. (2012) Cellular Immune Suppression in Paraneoplastic Neurologic Syndromes Targeting Intracellular Antigens. Arch Neurol 69 (9): 1–9Google Scholar
  17. Papez JW (1937) A Proposed Mechanism Of Emotion. Arch Neurol Psychiat 38 (4), p.725Google Scholar
  18. Prüß, H (2016) Pathophysiologie und Prognosefaktoren der Autoimmunenzephalitiden. Fortschr Neurol· Psychiat 84 (05), p.264PubMedGoogle Scholar
  19. Stich O, Rauer S (2013) Paraneoplastic neurological syndromes. Nervenarzt 84 (4): 455–460PubMedGoogle Scholar
  20. Tabata E et al. (2014) Immunopathological Significance of Ovarian Teratoma in Patients with Anti-N-Methyl-D-Aspartate Receptor Encephalitis. Eur Neurol 71 (1–2): 42–48Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik und Poliklinik für NeurologieUniversität zu KölnKölnDeutschland
  2. 2.Inst. für Klinische NeuroimmunologieKlinikum der LMU MünchenMünchenDeutschland
  3. 3.Klinik für NeurologieAgaplesion Bethesda Krankenhaus WuppertalWuppertalDeutschland
  4. 4.St.-Josef-Hospital, Klinik für NeurologieRuhr-Universität BochumBochumDeutschland
  5. 5.Charité Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations