Predictive Control for Robot-Assisted Assembly in Motion within Free Float Flawless Assembly

  • Christoph Nicksch
  • Christoph Storm
  • Felix Bertelsmeier
  • Robert Schmitt
Conference paper

Zusammenfassung

This work focuses on the application of model predictive control (MPC) to the trajectory tracking problem for the integrated assembly of truck windshields in motion. Due to the continuous movement of the products, the handling device holding the windshield must be synchronized to the moving truck cabin to meet tolerance requirements. Using a MPC approach a model is derived to simulate the future system behavior to obtain a control law. The application of the control model is numerically simulated for effectiveness over short time periods for transient targets. The simulated results are experimentally verified on a full-scale demonstrator mimicking an actual assembly line environment. The experimental results show that the MPC approach is suitable for a windshield assembly in motion compensating system dead times and fulfilling synchronization between handling system and product. The presented approach allows for the efficient integration of automated assembly processes using state of the art handling systems into continuously moving assembly lines.

Schlüsselwörter

Model Predictive Control Large Scale Metrology Assembly in Motion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Prasch, M.: Integration leistungsgewandelter Mitarbeiter in die variantenreiche Serienmontage. Herbert Utz Verlag, Munich (2010).Google Scholar
  2. 2.
    Storm, C., Schönberg, A.: Model Predictive Control Approach for assembling Large Components in Motion. Production Engineering - Research and Development 11(2), 167-173 (2017).Google Scholar
  3. 3.
    Reinhart, G.; Werner, J.: Flexible Automation for the Assembly in Motion. Annals of the CIRP, vol. 56, pp. 25-28 (2007).Google Scholar
  4. 4.
    Cheng, M.; Li, Y.: Controller Synthesis of Tracking and Synchronization for Multiaxis Motion System. IEEE Transactions on Control Systems Technology, vol. 22, pp. 378-386 (2011).Google Scholar
  5. 5.
    Werner, J.: Methode zur roboterbasierten förderbandsynchronen Fließbandmontage am Beispiel der Automobilindustrie. Herbert Utz, Verlag, Munich (2008).Google Scholar
  6. 6.
    Demeester, F., Dresselhaus, M.: Referenzsysteme für wandlungsfähige Produktion. AWK Aachener Wekzeugmaschinen-Kolloquium, pp. 449-477, Shaker, Aachen (2011).Google Scholar
  7. 7.
  8. 8.
    Kühne, F., Lages, W.: Model Predictive Control of a Mobile Robot Using Linearization. International Conference on Mechatronics and Robotics 2004, IEEE Industrial Electronics Society: Mechatronics and Robotics, vol. 4, pp. 525-530 (2005).Google Scholar
  9. 9.
    Ellis, M., Durand, H: A tutorial review of economic model predictive control methods. Journal of Process Control 24, 1156-1178 (2014).Google Scholar
  10. 10.
    Schmitt, R., Schönberg, A.: Global referencing systems and their contribution to a versatile production. Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation, Guimarães, Portugal (2011).Google Scholar
  11. 11.
    Norman, A., Schönberg A.: Validation of iGPS as an external measurement system for cooperative robot positioning. The International Journal of Advanced Manufacturing Technology, vol. 64, pp. 427-446 (2013).Google Scholar
  12. 12.
    Wang, Z.; Mastrogiacomo, L.: Experimental comparison of dynamic tracking performance of iGPS and laser tracker. The International Journal of Advanced Manufacturing Technology, vol. 56, pp. 205-213 (2011).Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Christoph Nicksch
    • 1
  • Christoph Storm
    • 1
  • Felix Bertelsmeier
    • 1
  • Robert Schmitt
    • 1
  1. 1.Chair of Production Metrology and Quality ManagementRWTH Aachen UniversityAachenDeutschland

Personalised recommendations