A Flexible Framework to Model and Evaluate Factory Control Systems in Virtual Testbeds

Conference paper

Zusammenfassung

Modern decentralized factory control systems promise to beat traditional hierarchical systems with regard to flexibility and fault tolerance. Despite the benefits, many companies hesitate to make the switch because they have little experience with decentralized systems and cannot fathom the specific implications for their production scenario. To support companies in evaluating specific solutions, we recommend to use Virtual Testbeds, which provide close-to-reality multi-domain simulations and interactive 3D visualizations of production systems. In order to represent different control strategies in Virtual Testbeds, we propose a new framework in which control strategies consist of modular control units. By mixing these control units in different ways, centralized, decentralized and hybrid approaches can easily be implemented. We evaluate the framework by building and controlling a digital twin of a real production system. Together with the unique features of Virtual Testbeds, the proposed framework is an essential step towards a case-bycase decision support for factory control decentralization projects.

Schlüsselwörter

Virtual Testbeds factory automation decentralized factory control control modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Scholz-Reiter, B., Freitag, M., Beer, C.D., Jagalski, T.: Modelling and analysis of autonomous shop floor control. In: 38th CIRP Int. Sem. on Manufacturing Systems – CIRP ISMS ’05, Florianopolis. pp. 16–18 (2005)Google Scholar
  2. 2.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (1995)Google Scholar
  3. 3.
    Rossmann, J., Jung, T.J., Rast, M.: Developing virtual testbeds for mobile robotic applications in the woods and on the moon. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 4952–4957. IEEE (2010)Google Scholar
  4. 4.
    Thieling, J., Roßmann, J.: Virtual testbeds for the development of sensor-enabled applications. In: Schüppstuhl, T., Franke, J., Tracht, K. (eds.) Tagungsband des 2. Kongresses Montage Handhabung Industrieroboter, pp. 23–32. Springer Berlin Heidelberg, Berlin, Heidelberg (2017)Google Scholar
  5. 5.
    Rossmann, J., ten Hompel, M., Eilers, K.: Ermittlung der Leistungsverfügbarkeit zellularer Intralogistiksysteme mit Hilfe von Simulations- und VR-Techniken, https://www.logistics-journal.de/proceedings/2014/4059
  6. 6.
    Schlette, C., Kaigom, E.G., Losch, D., Grinshpun, G., Emde, M., Waspe, R., Wantia, N., Roßmann, J.: 3d simulation-based user interfaces for a highly-reconfigurable industrial assembly cell. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). pp. 1–6. IEEE (2016)Google Scholar
  7. 7.
    Delbrügger, T., Lenz, L.T., Losch, D., Rossmann, J.: A navigation framework for digital twins of factories based on building information modeling. In: 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). pp. 1–4. IEEE (2017)Google Scholar
  8. 8.
    E. Kaigom, M. Priggemeyer, J. Rossmann: 3d advanced simulation approach to address energy consumption issues of robot manipulators – an eRobotics approach. In: Proceedings for the joint conference of ISR 2014, 45th International Symposium on Robotics, Robotik 2014, 8th German Conference on Robotics. VDE-Verl., Berlin and Offenbach (2014), http://ieeexplore.ieee.org/document/6840208/
  9. 9.
    Craven, B.D.: Control and Optimization. Chapman & Hall Mathematics Series, Springer US, Boston, MA and s.l. (1995), http://dx.doi.org/10.1007/978-1-4899-7226-2
  10. 10.
    Siarry, P. (ed.): Metaheuristics. Springer, Cham (2016)Google Scholar
  11. 11.
    von Lücken, C., Barán, B., Brizuela, C.: A survey on multi-objective evolutionary algorithms for many-objective problems. Computational Optimization and Applications 25(4), 536 (2014)Google Scholar
  12. 12.
    Nyhuis, P., Wiendahl, H.P.: Fundamentals of Production Logistics: Theory, Tools and Applications. Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.org/10.1007/978-3-540-34211-3
  13. 13.
    Schlette, C., Losch, D., Rossmann, J.: A visual programming framework for complex robotic systems in micro-optical assembly. In: Proceedings for the joint International Conference of ISR/ROBOTIK 2014 - 45th International Symposium on Robotics (ISR 2014) and the 8th German Conference on Robotics (ROBOTIK 2014). pp. 750–755. VDE Verlag Berlin, Munich (2014)Google Scholar
  14. 14.
    Gamst, M.: Exact and heuristic solution approaches for the integrated job scheduling and constrained network routing problem. Combinatorial Optimization 164, Part 1, 121–137 (2014)Google Scholar
  15. 15.
    Rossmann, J., Schluse, M., Schlette, C., Waspe, R.: Control by 3d simulation – a new eRobotics approach to control design in automation. In: Hutchison, D., Kanade, T., Kittler, J., Kleinberg, J.M., Mattern, F., Mitchell, J.C., Naor, M., Nierstrasz, O., Pandu Rangan, C., Steffen, B., Sudan, M., Terzopoulos, D., Tygar, D., Vardi, M.Y., Weikum, G., Su, C.Y., Rakheja, S., Liu, H. (eds.) Intelligent Robotics and Applications, Lecture Notes in Computer Science, vol. 7507, pp. 186–197. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Robot TechnologyRIF e.V.DortmundDeutschland
  2. 2.Institute for Man-Machine-InteractionRWTH AachenAachenDeutschland

Personalised recommendations