Advertisement

Carrier-Transport

  • Jürgen Rettinger
  • Silvia Schwarz
  • Wolfgang Schwarz
Chapter

Zusammenfassung

Während porenbildende Proteine in ihrem offenen Zustand eine mehr oder weniger freie Diffusion von Ionen entlang des elektrochemischen Gradienten ermöglichen, durchlaufen Carrier-Proteine Konformationsänderungen, um ein Substrat über die Membrane zu transportieren. In diesem Kapitel wird an Beispielen illustriert, wie die Elektrophysiologie Carrier-Transport studieren kann. Abschließend wird kurz darauf eingegangen, dass verschiedene Carrier auch in einem Porenmodus arbeiten können.

Literatur

  1. Eckstein-Ludwig U, Fei J, Schwarz W (1999) Inhibition of uptake, steady-state currents, and transient charge movements generated by the neuronal GABA transporter by various anticonvulsant drugs. Br J Pharmacol 128:92–102CrossRefPubMedPubMedCentralGoogle Scholar
  2. Eckstein-Ludwig U, Fueta Y, Fei J, Schwarz W (2000) The neuronal GABA transporter GAT1 as a target for action of antiepileptic drugs. In: Suketa et al (Hrsg) Control and diseases of sodium transport proteins and channels. Elsevier, Amsterdam, S 373–376Google Scholar
  3. Grygorczyk R, Schwarz W, Passow H (1987) Potential dependence of the ″electrically silent″ anion exchange across the plasma membrane of Xenopus oocytes mediated by the band-3 protein of mouse red blood cells. J Membrane Biol 99:127–136CrossRefGoogle Scholar
  4. Passow H (1986) Molecular aspects of band 3 protein-mediated anion transport across the red blood cell membrane. Rev Physiol Bch Phar 103:61–203Google Scholar
  5. Rakowski RF, Vasilets LA, LaTona J, Schwarz W (1991) A negative slope in the current-voltage relationship of the Na+/K+ pump in Xenopus oocytes produced by reduction of external [K+]. J Membrane Biol 121:177–187CrossRefGoogle Scholar
  6. Salonikidis P, Kirichenko SN, Tatjanenko LV, Schwarz W, Vasilets LA (2000) Effects of extracellular pH on the function of the Na+,K+-ATPase. In: Taniguchi K (Hrsg) The Sodium Pump. Elsevier, AmsterdamGoogle Scholar
  7. Schwarz W, Grygorczyk R, Hof D (1989) Recording single-channel currents from human red-cells. Meth Enzymol 173:112–121CrossRefPubMedGoogle Scholar
  8. Schwarz W, Gu Q, Passow H (1992) Potential dependence of mouse band 3-mediated anion exchange in xenopus oocytes. In: Bamberg E, Passow H (Hrsg) The band 3 proteins: anion transporters, binding proteins and senecent antigens. Elsevier, Amsterdam, S 161–168CrossRefGoogle Scholar
  9. Vasilets LA, Schwarz W (1993) Structure-function relationships of cation binding in the Na+/K+-ATPase. Biochim Biophys Acta 1154:201–222CrossRefPubMedGoogle Scholar
  10. Vasilets LA, Wu CH, Wachter E, Schwarz W (2000) Gating role of the N-terminus of α-subunit of the Na+,K+-ATPase converted into a channel by palytoxin. In: Suketa Y (Hrsg) Control and deseases of sodium transport proteins and channels. Elsevier, AmsterdamGoogle Scholar
  11. Wu CH (2014) Pharmacological action of palytoxin. In: Rossini GP (Hrsg) Toxins and biological active compounds from microalgae, Bd. 2. CRC Press Taylor & Francis Group, Boca Raton, London, New YorkGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Jürgen Rettinger
    • 1
  • Silvia Schwarz
    • 2
    • 3
  • Wolfgang Schwarz
    • 2
    • 3
    • 4
  1. 1.Multi Channel Systems MCS GmbHReutlingenDeutschland
  2. 2.Shanghai Key Laboratory for Acupuncture Mechanism and Acupoint FunctionFudan UniversityShanghaiChina
  3. 3.Shanghai Research Center for Acupuncture and MeridiansShanghai University of Traditional Chinese MedicineShanghaiChina
  4. 4.Institut für BiophysikGoethe-Universität FrankfurtFrankfurt am MainDeutschland

Personalised recommendations