Advertisement

Effects of Alterations in Gait Mechanics on the Development of Osteoarthritis in the ACL-Deficient Knee

  • Ajit M. W. Chaudhari
  • Laura C. Schmitt
  • Thomas P. Andriacchi
Chapter

Abstract

This chapter discusses the early development of knee osteoarthritis with regard to ACL injury. In addition, the kinematic and kinetic changes in the knee after ACL injury are summarized. The interaction between altered joint kinematics and the structural and biological components of articular cartilage is explored as an initiating mechanism of premature cartilage degradation following ACL injury.

Keywords

Posttraumatic osteoarthritis Premature osteoarthritis Cartilage degradation ACL injury 

References

  1. 1.
    Kumm J, Tamm A, Lintrop M, Tamm A (2011) The prevalence and progression of radiographic knee osteoarthritis over 6 years in a population-based cohort of middle-aged subjects. Rheumatol Int 32(11):3545–3550.  https://doi.org/10.1007/s00296-011-2221-3 CrossRefPubMedGoogle Scholar
  2. 2.
    Nguyen US, Zhang Y, Zhu Y, Niu J, Zhang B, Felson DT (2011) Increasing prevalence of knee pain and symptomatic knee osteoarthritis: survey and cohort data. Ann Intern Med 155(11):725–732.  https://doi.org/10.1059/0003-4819-155-11-201112060-00004 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22(5):632–644CrossRefPubMedGoogle Scholar
  4. 4.
    Kannus P, Jarvinen M (1989) Posttraumatic anterior cruciate ligament insufficiency as a cause of osteoarthritis in a knee joint. Clin Rheumatol 8(2):251–260CrossRefPubMedGoogle Scholar
  5. 5.
    Lohmander LS, Ostenberg A, Englund M, Roos H (2004) High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 50(10):3145–3152CrossRefPubMedGoogle Scholar
  6. 6.
    Maletius W, Messner K (1999) Eighteen- to twenty-four-year follow-up after complete rupture of the anterior cruciate ligament. Am J Sports Med 27(6):711–717CrossRefPubMedGoogle Scholar
  7. 7.
    von Porat A, Roos EM, Roos H (2004) High prevalence of osteoarthritis 14 years after an anterior cruciate ligament tear in male soccer players: a study of radiographic and patient relevant outcomes. Ann Rheum Dis 63(3):269–273CrossRefGoogle Scholar
  8. 8.
    Meuffels DE, Favejee MM, Vissers MM, Heijboer MP, Reijman M, Verhaar JA (2009) Ten year follow-up study comparing conservative versus operative treatment of anterior cruciate ligament ruptures. A matched-pair analysis of high level athletes. Br J Sports Med 43(5):347–351.  https://doi.org/10.1136/bjsm.2008.049403 CrossRefPubMedGoogle Scholar
  9. 9.
    Oiestad BE, Holm I, Aune AK, Gunderson R, Myklebust G, Engebretsen L, Fosdahl MA, Risberg MA (2010) Knee function and prevalence of knee osteoarthritis after anterior cruciate ligament reconstruction: a prospective study with 10 to 15 years of follow-up. Am J Sports Med 38(11):2201–2210.  https://doi.org/10.1177/0363546510373876 CrossRefPubMedGoogle Scholar
  10. 10.
    Chaganti RK, Lane NE (2011) Risk factors for incident osteoarthritis of the hip and knee. Curr Rev Musculoskelet Med 4(3):99–104.  https://doi.org/10.1007/s12178-011-9088-5 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ait Si Selmi T, Fithian D, Neyret P (2006) The evolution of osteoarthritis in 103 patients with ACL reconstruction at 17 years follow-up. Knee 13(5):353–358.  https://doi.org/10.1016/j.knee.2006.02.014 CrossRefPubMedGoogle Scholar
  12. 12.
    Andriacchi TP, Dyrby CO (2005) Interactions between kinematics and loading during walking for the normal and ACL deficient knee. J Biomech 38(2):293–298.  https://doi.org/10.1016/j.jbiomech.2004.02.010 CrossRefPubMedGoogle Scholar
  13. 13.
    Georgoulis AD, Papadonikolakis A, Papageorgiou CD, Mitsou A, Stergiou N (2003) Three-dimensional tibiofemoral kinematics of the anterior cruciate ligament-deficient and reconstructed knee during walking. Am J Sports Med 31(1):75–79CrossRefPubMedGoogle Scholar
  14. 14.
    Ismail SA, Button K, Simic M, Van Deursen R, Pappas E (2016) Three-dimensional kinematic and kinetic gait deviations in individuals with chronic anterior cruciate ligament deficient knee: a systematic review and meta-analysis. Clin Biomech 35:68–80.  https://doi.org/10.1016/j.clinbiomech.2016.04.002 CrossRefGoogle Scholar
  15. 15.
    Li G, Moses JM, Papannagari R, Pathare NP, DeFrate LE, Gill TJ (2006) Anterior cruciate ligament deficiency alters the in vivo motion of the tibiofemoral cartilage contact points in both the anteroposterior and mediolateral directions. J Bone Joint Surg Am 88(8):1826–1834.  https://doi.org/10.2106/JBJS.E.00539 CrossRefPubMedGoogle Scholar
  16. 16.
    Beveridge JE, Heard BJ, Brown JJ, Shrive NG, Frank CB (2014) A new measure of tibiofemoral subchondral bone interactions that correlates with early cartilage damage in injured sheep. J Orthop Res 32(10):1371–1380.  https://doi.org/10.1002/jor.22685 CrossRefPubMedGoogle Scholar
  17. 17.
    Scanlan SF, Blazek K, Chaudhari AM, Safran MR, Andriacchi TP (2009) Graft orientation influences the knee flexion moment during walking in patients with anterior cruciate ligament reconstruction. Am J Sports Med 37(11):2173–2178.  https://doi.org/10.1177/0363546509339574 CrossRefPubMedGoogle Scholar
  18. 18.
    Scanlan SF, Chaudhari AM, Dyrby CO, Andriacchi TP (2010) Differences in tibial rotation during walking in ACL reconstructed and healthy contralateral knees. J Biomech 43(9):1817–1822.  https://doi.org/10.1016/j.jbiomech.2010.02.010 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Titchenal MR, Chu CR, Erhart-Hledik JC, Andriacchi TP (2017) Early changes in knee center of rotation during walking after anterior cruciate ligament reconstruction correlate with later changes in patient-reported outcomes. Am J Sports Med 45(4):915–921.  https://doi.org/10.1177/0363546516673835 CrossRefPubMedGoogle Scholar
  20. 20.
    Tashman S, Collon D, Anderson K, Kolowich P, Anderst W (2004) Abnormal rotational knee motion during running after anterior cruciate ligament reconstruction. Am J Sports Med 32(4):975–983CrossRefPubMedGoogle Scholar
  21. 21.
    Defrate LE, Papannagari R, Gill TJ, Moses JM, Pathare NP, Li G (2006) The 6 degrees of freedom kinematics of the knee after anterior cruciate ligament deficiency: an in vivo imaging analysis. Am J Sports Med 34(8):1240–1246.  https://doi.org/10.1177/0363546506287299 CrossRefPubMedGoogle Scholar
  22. 22.
    Barrance PJ, Williams GN, Snyder-Mackler L, Buchanan TS (2006) Altered knee kinematics in ACL-deficient non-copers: a comparison using dynamic MRI. J Orthop Res 24(2):132–140.  https://doi.org/10.1002/jor.20016 CrossRefPubMedGoogle Scholar
  23. 23.
    Logan MC, Williams A, Lavelle J, Gedroyc W, Freeman M (2004) Tibiofemoral kinematics following successful anterior cruciate ligament reconstruction using dynamic multiple resonance imaging. Am J Sports Med 32(4):984–992CrossRefPubMedGoogle Scholar
  24. 24.
    Scarvell JM, Smith PN, Refshauge KM, Galloway H, Woods K (2005) Comparison of kinematics in the healthy and ACL injured knee using MRI. J Biomech 38(2):255–262.  https://doi.org/10.1016/j.jbiomech.2004.02.012 CrossRefPubMedGoogle Scholar
  25. 25.
    Netravali NA, Giori NJ, Andriacchi TP (2010) Partial medial meniscectomy and rotational differences at the knee during walking. J Biomech 43(15):2948–2953.  https://doi.org/10.1016/j.jbiomech.2010.07.013 CrossRefPubMedGoogle Scholar
  26. 26.
    Hall M, Bryant AL, Wrigley TV, Pratt C, Crossley KM, Whitehead TS, Morris HG, Clark RA, Perraton LG (2016) Does meniscal pathology alter gait knee biomechanics and strength post-ACL reconstruction? Knee Surg Sports Traumatol Arthrosc 24(5):1501–1509.  https://doi.org/10.1007/s00167-015-3908-x CrossRefPubMedGoogle Scholar
  27. 27.
    Fukubayashi T, Torzilli PA, Sherman MF, Warren RF (1982) An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J Bone Joint Surg 64A(2):258–264CrossRefGoogle Scholar
  28. 28.
    Markolf KL, Mensch JS, Amstutz HC (1976) Stiffness and laxity of the knee--the contributions of the supporting structures. A quantitative in vitro study. J Bone Joint Surg Am 58(5):583–594CrossRefPubMedGoogle Scholar
  29. 29.
    Bedi A, Raphael B, Maderazo A, Pavlov H, Williams RJ 3rd (2010) Transtibial versus anteromedial portal drilling for anterior cruciate ligament reconstruction: a cadaveric study of femoral tunnel length and obliquity. Arthroscopy 26(3):342–350.  https://doi.org/10.1016/j.arthro.2009.12.006 CrossRefPubMedGoogle Scholar
  30. 30.
    Sohn DH, Garrett WE Jr (2009) Transitioning to anatomic anterior cruciate ligament graft placement. J Knee Surg 22(2):155–160CrossRefPubMedGoogle Scholar
  31. 31.
    Abebe ES, Utturkar GM, Taylor DC, Spritzer CE, Kim JP, Moorman CT 3rd, Garrett WE, DeFrate LE (2011) The effects of femoral graft placement on in vivo knee kinematics after anterior cruciate ligament reconstruction. J Biomech 44(5):924–929.  https://doi.org/10.1016/j.jbiomech.2010.11.028 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ristanis S, Stergiou N, Siarava E, Ntoulia A, Mitsionis G, Georgoulis AD (2009) Effect of femoral tunnel placement for reconstruction of the anterior cruciate ligament on tibial rotation. J Bone Joint Surg Am 91(9):2151–2158.  https://doi.org/10.2106/JBJS.H.00940 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Scanlan SF, Donahue JP, Andriacchi TP (2014) The in vivo relationship between anterior neutral tibial position and loss of knee extension after transtibial ACL reconstruction. Knee 21(1):74–79.  https://doi.org/10.1016/j.knee.2013.06.003 CrossRefPubMedGoogle Scholar
  34. 34.
    Wang H, Fleischli JE, Zheng NN (2013) Transtibial versus anteromedial portal technique in single-bundle anterior cruciate ligament reconstruction: outcomes of knee joint kinematics during walking. Am J Sports Med 41(8):1847–1856.  https://doi.org/10.1177/0363546513490663 CrossRefPubMedGoogle Scholar
  35. 35.
    Halonen KS, Mononen ME, Toyras J, Kroger H, Joukainen A, Korhonen RK (2016) Optimal graft stiffness and pre-strain restore normal joint motion and cartilage responses in ACL reconstructed knee. J Biomech 49(13):2566–2576.  https://doi.org/10.1016/j.jbiomech.2016.05.002 CrossRefPubMedGoogle Scholar
  36. 36.
    Hasler EM, Herzog W, Leonard TR, Stano A, Nguyen H (1998) In vivo knee joint loading and kinematics before and after ACL transection in an animal model. J Biomech 31(3):253–262CrossRefPubMedGoogle Scholar
  37. 37.
    Tashman S, Anderst W, Kolowich P, Havstad S, Arnoczky S (2004) Kinematics of the ACL-deficient canine knee during gait: serial changes over two years. J Orthop Res 22(5):931–941.  https://doi.org/10.1016/j.orthres.2004.01.008 CrossRefPubMedGoogle Scholar
  38. 38.
    Vilensky JA, O'Connor BL, Brandt KD, Dunn EA, Rogers PI, DeLong CA (1994) Serial kinematic analysis of the unstable knee after transection of the anterior cruciate ligament: temporal and angular changes in a canine model of osteoarthritis. J Orthop Res 12(2):229–237.  https://doi.org/10.1002/jor.1100120212 CrossRefPubMedGoogle Scholar
  39. 39.
    Liu W, Burton-Wurster N, Glant TT, Tashman S, Sumner DR, Kamath RV, Lust G, Kimura JH, Cs-Szabo G (2003) Spontaneous and experimental osteoarthritis in dog: similarities and differences in proteoglycan levels. J Orthop Res 21(4):730–737.  https://doi.org/10.1016/S0736-0266(03)00002-0 CrossRefPubMedGoogle Scholar
  40. 40.
    Pelletier JP, Mineau F, Faure MP, Martel-Pelletier J (1990) Imbalance between the mechanisms of activation and inhibition of metalloproteases in the early lesions of experimental osteoarthritis. Arthritis Rheum 33(10):1466–1476CrossRefPubMedGoogle Scholar
  41. 41.
    Yoshioka M, Coutts RD, Amiel D, Hacker SA (1996) Characterization of a model of osteoarthritis in the rabbit knee. Osteoarthr Cartil 4(2):87–98CrossRefPubMedGoogle Scholar
  42. 42.
    Erhart JC, Dyrby CO, D'Lima DD, Colwell CW, Andriacchi TP (2010) Changes in in vivo knee loading with a variable-stiffness intervention shoe correlate with changes in the knee adduction moment. J Orthop Res 28(12):1548–1553.  https://doi.org/10.1002/jor.21183 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Schipplein OD, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res 9(1):113–119CrossRefPubMedGoogle Scholar
  44. 44.
    Zhao D, Banks SA, Mitchell KH, D'Lima DD, Colwell CW Jr, Fregly BJ (2007) Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res 25(6):789–797.  https://doi.org/10.1002/jor.20379 CrossRefPubMedGoogle Scholar
  45. 45.
    Wellsandt E, Khandha A, Manal K, Axe MJ, Buchanan TS, Snyder-Mackler L (2017) Predictors of knee joint loading after anterior cruciate ligament reconstruction. J Orthop Res 35(3):651–656.  https://doi.org/10.1002/jor.23408 CrossRefPubMedGoogle Scholar
  46. 46.
    Andriacchi TP, Koo S, Scanlan SF (2009) Gait mechanics influence healthy cartilage morphology and osteoarthritis of the knee. J Bone Joint Surg Am 91(Suppl 1):95–101.  https://doi.org/10.2106/JBJS.H.01408 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Andriacchi TP, Mundermann A, Smith RL, Alexander EJ, Dyrby CO, Koo S (2004) A framework for the in vivo pathomechanics of osteoarthritis at the knee. Ann Biomed Eng 32(3):447–457CrossRefPubMedGoogle Scholar
  48. 48.
    Koo S, Andriacchi TP (2007) A comparison of the influence of global functional loads vs. local contact anatomy on articular cartilage thickness at the knee. J Biomech 40(13):2961–2966.  https://doi.org/10.1016/j.jbiomech.2007.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Li G, Park SE, DeFrate LE, Schutzer ME, Ji L, Gill TJ, Rubash HE (2005) The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact. Clin Biomech (Bristol, Avon) 20(7):736–744.  https://doi.org/10.1016/j.clinbiomech.2005.04.001 CrossRefGoogle Scholar
  50. 50.
    Kumar D, Kothari A, Souza RB, Wu S, Benjamin Ma C, Li X (2014) Frontal plane knee mechanics and medial cartilage MR relaxation times in individuals with ACL reconstruction: a pilot study. Knee 21(5):881–885.  https://doi.org/10.1016/j.knee.2014.06.005 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Blackburn JT, Pietrosimone B, Harkey MS, Luc BA, Pamukoff DN (2016) Inter-limb differences in impulsive loading following anterior cruciate ligament reconstruction in females. J Biomech 49(13):3017–3021.  https://doi.org/10.1016/j.jbiomech.2016.07.030 CrossRefPubMedGoogle Scholar
  52. 52.
    Scanlan SF, Favre J, Andriacchi TP (2013) The relationship between peak knee extension at heel-strike of walking and the location of thickest femoral cartilage in ACL reconstructed and healthy contralateral knees. J Biomech 46(5):849–854.  https://doi.org/10.1016/j.jbiomech.2012.12.026 CrossRefPubMedGoogle Scholar
  53. 53.
    Liphardt AM, Mundermann A, Koo S, Backer N, Andriacchi TP, Zange J, Mester J, Heer M (2009) Vibration training intervention to maintain cartilage thickness and serum concentrations of cartilage oligometric matrix protein (COMP) during immobilization. Osteoarthr Cartil 17(12):1598–1603.  https://doi.org/10.1016/j.joca.2009.07.007 CrossRefPubMedGoogle Scholar
  54. 54.
    Vanwanseele B, Eckstein F, Knecht H, Spaepen A, Stussi E (2003) Longitudinal analysis of cartilage atrophy in the knees of patients with spinal cord injury. Arthritis Rheum 48(12):3377–3381.  https://doi.org/10.1002/art.11367 CrossRefPubMedGoogle Scholar
  55. 55.
    Vanwanseele B, Eckstein F, Knecht H, Stussi E, Spaepen A (2002) Knee cartilage of spinal cord-injured patients displays progressive thinning in the absence of normal joint loading and movement. Arthritis Rheum 46(8):2073–2078.  https://doi.org/10.1002/art.10462 CrossRefPubMedGoogle Scholar
  56. 56.
    Kaur M, Ribeiro DC, Theis JC, Webster KE, Sole G (2016) Movement patterns of the knee during gait following ACL reconstruction: a systematic review and meta-analysis. Sports Med 46(12):1869–1895.  https://doi.org/10.1007/s40279-016-0510-4 CrossRefPubMedGoogle Scholar
  57. 57.
    Robbins SM, Birmingham TB, Jones IC, Sischek EL, Dietzsch M, Giffin JR (2016) Comparison of gait characteristics between patients with nontraumatic and posttraumatic medial knee osteoarthritis. Arthritis Care Res 68(9):1215–1223.  https://doi.org/10.1002/acr.22822 CrossRefGoogle Scholar
  58. 58.
    Patterson MR, Delahunt E, Caulfield B (2014) Peak knee adduction moment during gait in anterior cruciate ligament reconstructed females. Clin Biomech (Bristol, Avon) 29(2):138–142.  https://doi.org/10.1016/j.clinbiomech.2013.11.021 CrossRefGoogle Scholar
  59. 59.
    Pietrosimone B, Loeser RF, Blackburn JT, Padua DA, Harkey MS, Stanley LE, Luc-Harkey BA, Ulici V, Marshall SW, Jordan JM, Spang JT (2017) Biochemical markers of cartilage metabolism are associated with walking biomechanics 6-months following anterior cruciate ligament reconstruction. J Orthop Res 35(10):2288–2297.  https://doi.org/10.1002/jor.23534 CrossRefPubMedGoogle Scholar
  60. 60.
    Varma RK, Duffell LD, Nathwani D, McGregor AH (2014) Knee moments of anterior cruciate ligament reconstructed and control participants during normal and inclined walking. BMJ Open 4(6):e004753.  https://doi.org/10.1136/bmjopen-2013-004753 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Wellsandt E, Gardinier ES, Manal K, Axe MJ, Buchanan TS, Snyder-Mackler L (2016) Decreased knee joint loading associated with early knee osteoarthritis after anterior cruciate ligament injury. Am J Sports Med 44(1):143–151.  https://doi.org/10.1177/0363546515608475 CrossRefPubMedGoogle Scholar
  62. 62.
    Gokeler A, Benjaminse A, van Eck CF, Webster KE, Schot L, Otten E (2013) Return of normal gait as an outcome measurement in acl reconstructed patients. A systematic review. Int J Sports Phys Ther 8(4):441–451PubMedPubMedCentralGoogle Scholar
  63. 63.
    Hart HF, Culvenor AG, Collins NJ, Ackland DC, Cowan SM, Machotka Z, Crossley KM (2016) Knee kinematics and joint moments during gait following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Br J Sports Med 50(10):597–612.  https://doi.org/10.1136/bjsports-2015-094797 CrossRefPubMedGoogle Scholar
  64. 64.
    Chowdhury TT, Bader DL, Lee DA (2006) Dynamic compression counteracts IL-1beta induced iNOS and COX-2 activity by human chondrocytes cultured in agarose constructs. Biorheology 43(3–4):413–429PubMedGoogle Scholar
  65. 65.
    Das P, Schurman DJ, Smith RL (1997) Nitric oxide and G proteins mediate the response of bovine articular chondrocytes to fluid-induced shear. J Orthop Res 15(1):87–93.  https://doi.org/10.1002/jor.1100150113 CrossRefPubMedGoogle Scholar
  66. 66.
    Deschner J, Hofman CR, Piesco NP, Agarwal S (2003) Signal transduction by mechanical strain in chondrocytes. Curr Opin Clin Nutr Metab Care 6(3):289–293.  https://doi.org/10.1097/01.mco.0000068964.34812.2b CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Deschner J, Rath-Deschner B, Agarwal S (2006) Regulation of matrix metalloproteinase expression by dynamic tensile strain in rat fibrochondrocytes. Osteoarthr Cartil 14(3):264–272.  https://doi.org/10.1016/j.joca.2005.09.005 CrossRefPubMedGoogle Scholar
  68. 68.
    Elder SH, Goldstein SA, Kimura JH, Soslowsky LJ, Spengler DM (2001) Chondrocyte differentiation is modulated by frequency and duration of cyclic compressive loading. Ann Biomed Eng 29(6):476–482CrossRefPubMedGoogle Scholar
  69. 69.
    Fedewa MM, Oegema TR Jr, Schwartz MH, MacLeod A, Lewis JL (1998) Chondrocytes in culture produce a mechanically functional tissue. J Orthop Res 16(2):227–236.  https://doi.org/10.1002/jor.1100160210 CrossRefPubMedGoogle Scholar
  70. 70.
    Ikenoue T, Trindade MC, Lee MS, Lin EY, Schurman DJ, Goodman SB, Smith RL (2003) Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res 21(1):110–116.  https://doi.org/10.1016/S0736-0266(02)00091-8 CrossRefPubMedGoogle Scholar
  71. 71.
    Knight MM, Ross JM, Sherwin AF, Lee DA, Bader DL, Poole CA (2001) Chondrocyte deformation within mechanically and enzymatically extracted chondrons compressed in agarose. Biochim Biophys Acta 1526(2):141–146CrossRefPubMedGoogle Scholar
  72. 72.
    Lee DA, Bader DL (1997) Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res 15(2):181–188.  https://doi.org/10.1002/jor.1100150205 CrossRefPubMedGoogle Scholar
  73. 73.
    Smith RL, Donlon BS, Gupta MK, Mohtai M, Das P, Carter DR, Cooke J, Gibbons G, Hutchinson N, Schurman DJ (1995) Effects of fluid-induced shear on articular chondrocyte morphology and metabolism in vitro. J Orthop Res 13(6):824–831.  https://doi.org/10.1002/jor.1100130604 CrossRefPubMedGoogle Scholar
  74. 74.
    Smith RL, Trindade MC, Ikenoue T, Mohtai M, Das P, Carter DR, Goodman SB, Schurman DJ (2000) Effects of shear stress on articular chondrocyte metabolism. Biorheology 37(1):95–107Google Scholar
  75. 75.
    Freeman PM, Natarajan RN, Kimura JH, Andriacchi TP (1994) Chondrocyte cells respond mechanically to compressive loads. J Orthop Res 12(3):311–320.  https://doi.org/10.1002/jor.1100120303 CrossRefPubMedGoogle Scholar
  76. 76.
    Buschmann MD, Kim YJ, Wong M, Frank E, Hunziker EB, Grodzinsky AJ (1999) Stimulation of aggrecan synthesis in cartilage explants by cyclic loading is localized to regions of high interstitial fluid flow. Arch Biochem Biophys 366(1):1–7CrossRefPubMedGoogle Scholar
  77. 77.
    Quinn TM, Grodzinsky AJ, Buschmann MD, Kim YJ, Hunziker EB (1998) Mechanical compression alters proteoglycan deposition and matrix deformation around individual cells in cartilage explants. J Cell Sci 111(Pt 5):573–583PubMedGoogle Scholar
  78. 78.
    Wong M, Wuethrich P, Buschmann MD, Eggli P, Hunziker E (1997) Chondrocyte biosynthesis correlates with local tissue strain in statically compressed adult articular cartilage. J Orthop Res 15(2):189–196.  https://doi.org/10.1002/jor.1100150206 CrossRefPubMedGoogle Scholar
  79. 79.
    Durrant LA, Archer CW, Benjamin M, Ralphs JR (1999) Organisation of the chondrocyte cytoskeleton and its response to changing mechanical conditions in organ culture. J Anat 194(Pt 3):343–353CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Bevill SL, Briant PL, Levenston ME, Andriacchi TP (2009) Central and peripheral region tibial plateau chondrocytes respond differently to in vitro dynamic compression. Osteoarthr Cartil 17(8):980–987.  https://doi.org/10.1016/j.joca.2008.12.005 CrossRefPubMedGoogle Scholar
  81. 81.
    Videman T (1982) Experimental osteoarthritis in the rabbit: comparison of different periods of repeated immobilization. Acta Orthop Scand 53(3):339–347CrossRefPubMedGoogle Scholar
  82. 82.
    Behrens F, Kraft EL, Oegema TR Jr (1989) Biochemical changes in articular cartilage after joint immobilization by casting or external fixation. J Orthop Res 7(3):335–343CrossRefPubMedGoogle Scholar
  83. 83.
    Kiviranta I, Tammi M, Jurvelin J, Saamanen AM, Helminen HJ (1988) Moderate running exercise augments glycosaminoglycans and thickness of articular cartilage in the knee joint of young beagle dogs. J Orthop Res 6(2):188–195.  https://doi.org/10.1002/jor.1100060205 CrossRefPubMedGoogle Scholar
  84. 84.
    Kiviranta I, Jurvelin J, Tammi M, Saamanen AM, Helminen HJ (1987) Weight bearing controls glycosaminoglycan concentration and articular cartilage thickness in the knee joints of young beagle dogs. Arthritis Rheum 30(7):801–809CrossRefPubMedGoogle Scholar
  85. 85.
    Appleyard RC, Burkhardt D, Ghosh P, Read R, Cake M, Swain MV, Murrell GA (2003) Topographical analysis of the structural, biochemical and dynamic biomechanical properties of cartilage in an ovine model of osteoarthritis. Osteoarthr Cartil 11(1):65–77CrossRefPubMedGoogle Scholar
  86. 86.
    Bullough PG, Yawitz PS, Tafra L, Boskey AL (1985) Topographical variations in the morphology and biochemistry of adult canine tibial plateau articular cartilage. J Orthop Res 3(1):1–16.  https://doi.org/10.1002/jor.1100030101 CrossRefPubMedGoogle Scholar
  87. 87.
    Clark JM (1991) Variation of collagen fiber alignment in a joint surface: a scanning electron microscope study of the tibial plateau in dog, rabbit, and man. J Orthop Res 9(2):246–257.  https://doi.org/10.1002/jor.1100090213 CrossRefPubMedGoogle Scholar
  88. 88.
    Little CB, Ghosh P (1997) Variation in proteoglycan metabolism by articular chondrocytes in different joint regions is determined by post-natal mechanical loading. Osteoarthr Cartil 5(1):49–62CrossRefPubMedGoogle Scholar
  89. 89.
    Quinn TM, Hunziker EB, Hauselmann HJ (2005) Variation of cell and matrix morphologies in articular cartilage among locations in the adult human knee. Osteoarthr Cartil 13(8):672–678.  https://doi.org/10.1016/j.joca.2005.04.011 CrossRefPubMedGoogle Scholar
  90. 90.
    Eggli PS, Hunziker EB, Schenk RK (1988) Quantitation of structural features characterizing weight- and less-weight-bearing regions in articular cartilage: a stereological analysis of medial femoral condyles in young adult rabbits. Anat Rec 222(3):217–227.  https://doi.org/10.1002/ar.1092220302 CrossRefPubMedGoogle Scholar
  91. 91.
    Ahmed AM, Burke DL (1983) In-vitro measurement of static pressure distribution in synovial joints--Part I: Tibial surface of the knee. J Biomech Eng 105(3):216–225CrossRefPubMedGoogle Scholar
  92. 92.
    Koo S, Andriacchi TP (2008) The knee joint center of rotation is predominantly on the lateral side during normal walking. J Biomech 41(6):1269–1273.  https://doi.org/10.1016/j.jbiomech.2008.01.013 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Wilson W, Driessen NJ, van Donkelaar CC, Ito K (2006) Prediction of collagen orientation in articular cartilage by a collagen remodeling algorithm. Osteoarthr Cartil 14(11):1196–1202.  https://doi.org/10.1016/j.joca.2006.05.006 CrossRefPubMedGoogle Scholar
  94. 94.
    Mow VC, Kuei SC, Lai WM, Armstrong CG (1980) Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J Biomech Eng 102(1):73–84CrossRefPubMedGoogle Scholar
  95. 95.
    Guilak F, Ratcliffe A, Lane N, Rosenwasser MP, Mow VC (1994) Mechanical and biochemical changes in the superficial zone of articular cartilage in canine experimental osteoarthritis. J Orthop Res 12(4):474–484CrossRefPubMedGoogle Scholar
  96. 96.
    Maniwa S, Nishikori T, Furukawa S, Kajitani K, Ochi M (2001) Alteration of collagen network and negative charge of articular cartilage surface in the early stage of experimental osteoarthritis. Arch Orthop Trauma Surg 121(4):181–185CrossRefPubMedGoogle Scholar
  97. 97.
    Forster H, Fisher J (1999) The influence of continuous sliding and subsequent surface wear on the friction of articular cartilage. Proc Inst Mech Eng H 213(4):329–345CrossRefPubMedGoogle Scholar
  98. 98.
    Wang H, Ateshian GA (1997) The normal stress effect and equilibrium friction coefficient of articular cartilage under steady frictional shear. J Biomech 30(8):771–776CrossRefPubMedGoogle Scholar
  99. 99.
    Fujisawa T, Hattori T, Takahashi K, Kuboki T, Yamashita A, Takigawa M (1999) Cyclic mechanical stress induces extracellular matrix degradation in cultured chondrocytes via gene expression of matrix metalloproteinases and interleukin-1. J Biochem 125(5):966–975CrossRefPubMedGoogle Scholar
  100. 100.
    Andriacchi TP, Mundermann A (2006) The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol 18(5):514–518.  https://doi.org/10.1097/01.bor.0000240365.16842.4e CrossRefPubMedGoogle Scholar
  101. 101.
    Chaudhari AM, Briant PL, Bevill SL, Koo S, Andriacchi TP (2008) Knee kinematics, cartilage morphology, and osteoarthritis after ACL injury. Med Sci Sports Exerc 40(2):215–222.  https://doi.org/10.1249/mss.0b013e31815cbb0e CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Ajit M. W. Chaudhari
    • 1
  • Laura C. Schmitt
    • 1
  • Thomas P. Andriacchi
    • 2
  1. 1.School of Health and Rehabilitation SciencesOhio State UniversityColumbusUSA
  2. 2.Department of Mechanical EngineeringStanford UniversityStanfordUSA

Personalised recommendations