Advertisement

Restoration of Proprioception and Neuromuscular Control Following ACL Injury and Surgery

  • Kevin E. Wilk
Chapter

Abstract

This chapter summarizes current rehabilitation strategies required to restore normal muscle strength, joint function, and neuromuscular control after ACL injury and reconstruction. A summary of the effects of ACL injury on proprioception, gait, and neuromuscular control is provided. A comprehensive neuromuscular training program is described that includes balance, perturbation, plyometric, and technique training. The authors’ successful postoperative rehabilitation program is presented in detail.

Keywords

ACL rehabilitation Neuromuscular retraining ACL injury ACL recovery 

References

  1. 1.
    Wilk KE (2015) Anterior cruciate ligament injury prevention and rehabilitation: let's get it right. J Orthop Sports Phys Ther 45(10):729–730.  https://doi.org/10.2519/jospt.2015.0109 CrossRefPubMedGoogle Scholar
  2. 2.
    Andriacchi TP, Birac D (1993) Functional testing in the anterior cruciate ligament-deficient knee. Clin Orthop Relat Res 288:40–47Google Scholar
  3. 3.
    Howells BE, Ardern CL, Webster KE (2011) Is postural control restored following anterior cruciate ligament reconstruction? A systematic review. Knee Surg Sports Traumatol Arthrosc 19(7):1168–1177.  https://doi.org/10.1007/s00167-011-1444-x CrossRefPubMedGoogle Scholar
  4. 4.
    Wojtys EM, Huston LJ (1994) Neuromuscular performance in normal and anterior cruciate ligament-deficient lower extremities. Am J Sports Med 22(1):89–104CrossRefPubMedGoogle Scholar
  5. 5.
    Chmielewski TL, Jones D, Day T, Tillman SM, Lentz TA, George SZ (2008) The association of pain and fear of movement/reinjury with function during anterior cruciate ligament reconstruction rehabilitation. J Orthop Sports Phys Ther 38(12):746–753.  https://doi.org/10.2519/jospt.2008.2887 CrossRefPubMedGoogle Scholar
  6. 6.
    Lentz TA, Zeppieri G Jr, Tillman SM, Indelicato PA, Moser MW, George SZ, Chmielewski TL (2012) Return to preinjury sports participation following anterior cruciate ligament reconstruction: contributions of demographic, knee impairment, and self-report measures. J Orthop Sports Phys Ther 42(11):893–901.  https://doi.org/10.2519/jospt.2012.4077 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Fitzgerald GK, Axe MJ, Snyder-Mackler L (2000) The efficacy of perturbation training in nonoperative anterior cruciate ligament rehabilitation programs for physical active individuals. Phys Ther 80(2):128–140PubMedGoogle Scholar
  8. 8.
    Lephart SM, Pincivero DM, Giraldo JL, Fu FH (1997) The role of proprioception in the management and rehabilitation of athletic injuries. Am J Sports Med 25(1):130–137CrossRefPubMedGoogle Scholar
  9. 9.
    Wilk KE (1994) Rehabilitation of isolated and combined posterior cruciate ligament injuries. Clin Sports Med 13(3):649–677PubMedGoogle Scholar
  10. 10.
    Johansson H, Sjolander P, Sojka P (1991) Receptors in the knee joint ligaments and their role in the biomechanics of the joint. Crit Rev Biomed Eng 18(5):341–368PubMedGoogle Scholar
  11. 11.
    Houk J, Simon W (1967) Responses of Golgi tendon organs to forces applied to muscle tendon. J Neurophysiol 30(6):1466–1481CrossRefPubMedGoogle Scholar
  12. 12.
    Matthews PB (1971) Recent advances in the understanding of the muscle spindle. Sci Basis Med Annu Rev:99–128Google Scholar
  13. 13.
    Matthews PB (1981) Evolving views on the internal operation and functional role of the muscle spindle. J Physiol 320:1–30CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Johansson H (1991) Role of knee ligaments in proprioception and regulation of muscle stiffness. J Electromyogr Kinesiol 1(3):158–179CrossRefPubMedGoogle Scholar
  15. 15.
    Biedert RM (2000) Contribution of the three levels of nervous system motor control: spinal cord, lower brain, cerebral cortex. In: Lephart S, Fu F (eds) Proprioception and neuromuscular control in joint stability. Human Kinetics, Champaign, pp 23–29Google Scholar
  16. 16.
    Brooks V (1986) The neural basis of motor control. Oxford University Press, New York, NYGoogle Scholar
  17. 17.
    Evarts EV (1973) Motor cortex reflexes associated with learned movement. Science 179(72):501–503CrossRefPubMedGoogle Scholar
  18. 18.
    Schmidt R, Lee T (1999) Motor control and learning: a behavioral emphasis, 3rd edn. Human Kinetics, ChampaignGoogle Scholar
  19. 19.
    Di Fabio RP, Graf B, Badke MB, Breunig A, Jensen K (1992) Effect of knee joint laxity on long-loop postural reflexes: evidence for a human capsular-hamstring reflex. Exp Brain Res 90(1):189–200CrossRefPubMedGoogle Scholar
  20. 20.
    Chmielewski TL, Rudolph KS, Snyder-Mackler L (2002) Development of dynamic knee stability after acute ACL injury. J Electromyogr Kinesiol 12(4):267–274CrossRefPubMedGoogle Scholar
  21. 21.
    Barrack RL, Skinner HB, Buckley SL (1989) Proprioception in the anterior cruciate deficient knee. Am J Sports Med 17(1):1–6CrossRefPubMedGoogle Scholar
  22. 22.
    Beard DJ, Kyberd PJ, Fergusson CM, Dodd CAF (1993) Proprioception after rupture of the anterior cruciate ligament. An objective indication of the need for surgery? J Bone Joint Surg 75B(2):311–315CrossRefGoogle Scholar
  23. 23.
    Lephart S, Kocher MS, Fu F, Borsa PA, Harner CD (1992) Proprioception following anterior cruciate ligament reconstruction. J Sport Rehab 1:188–196CrossRefGoogle Scholar
  24. 24.
    Hooks TR, Wilk KE, Reinold MM (2003) Comparison of proprioceptive deficits of the involved and noninvolved lower extremity following ACL injury and surgical reconstruction. J Orthop Sports Phys Ther 33:A59Google Scholar
  25. 25.
    Farquhar SJ, Chmielewski TL, Snyder-Mackler L (2005) Accuracy of predicting maximal quadriceps force from submaximal effort contractions after anterior cruciate ligament injury. Muscle Nerve 32(4):500–505.  https://doi.org/10.1002/mus.20366 CrossRefPubMedGoogle Scholar
  26. 26.
    Hart JM, Pietrosimone B, Hertel J, Ingersoll CD (2010) Quadriceps activation following knee injuries: a systematic review. J Athl Train 45(1):87–97.  https://doi.org/10.4085/1062-6050-45.1.87 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Hurley MV, Jones DW, Newham DJ (1994) Arthrogenic quadriceps inhibition and rehabilitation of patients with extensive traumatic knee injuries. Clin Sci (Lond) 86(3):305–310CrossRefGoogle Scholar
  28. 28.
    Chmielewski TL, Hurd WJ, Rudolph KS, Axe MJ, Snyder-Mackler L (2005) Perturbation training improves knee kinematics and reduces muscle co-contraction after complete unilateral anterior cruciate ligament rupture. Phys Ther 85(8):740–749. discussion 750-744PubMedGoogle Scholar
  29. 29.
    Barrett DS, Cobb AG, Bentley G (1991) Joint proprioception in normal, osteoarthritic and replaced knees. J Bone Joint Surg Br 73(1):53–56CrossRefPubMedGoogle Scholar
  30. 30.
    Beard DJ, Dodd CAF, Trundle HR, Simpson AHRW (1994) Proprioception enhancement for anterior cruciate ligament deficiency. A prospective randomised trial of two physiotherapy regimes. J Bone Joint Surg 76B(4):654–659CrossRefGoogle Scholar
  31. 31.
    Skinner HB, Wyatt MP, Hodgdon JA, Conard DW, Barrack RL (1986) Effect of fatigue on joint position sense of the knee. J Orthop Res 4(1):112–118CrossRefPubMedGoogle Scholar
  32. 32.
    Denti M, Randelli P, Lo Vetere D, Moioli M, Bagnoli I, Cawley PW (2000) Motor control performance in the lower extremity: normals vs. anterior cruciate ligament reconstructed knees 5–8 years from the index surgery. Knee Surg Sports Traumatol Arthrosc 8(5):296–300CrossRefPubMedGoogle Scholar
  33. 33.
    Yosmaoglu HB, Baltaci G, Kaya D, Ozer H (2011) Tracking ability, motor coordination, and functional determinants after anterior cruciate ligament reconstruction. J Sport Rehabil 20(2):207–218CrossRefPubMedGoogle Scholar
  34. 34.
    Zouita Ben Moussa A, Zouita S, Dziri C, Ben Salah FZ (2009) Single-leg assessment of postural stability and knee functional outcome two years after anterior cruciate ligament reconstruction. Ann Phys Rehabil Med 52(6):475–484.  https://doi.org/10.1016/j.rehab.2009.02.006 CrossRefPubMedGoogle Scholar
  35. 35.
    Dutton M (2004) Neuromuscular control. In: Dutton M (ed) Orthopaedic examination, evaluation and intervention. McGraw Hill, New York, NY, pp 55–57Google Scholar
  36. 36.
    Palmieri-Smith RM, Kreinbrink J, Ashton-Miller JA, Wojtys EM (2007) Quadriceps inhibition induced by an experimental knee joint effusion affects knee joint mechanics during a single-legged drop landing. Am J Sports Med 35(8):1269–1275CrossRefPubMedGoogle Scholar
  37. 37.
    Paterno MV, Ford KR, Myer GD, Heyl R, Hewett TE (2007) Limb asymmetries in landing and jumping 2 years following anterior cruciate ligament reconstruction. Clin J Sport Med 17(4):258–262CrossRefPubMedGoogle Scholar
  38. 38.
    Hurd WJ, Axe MJ, Snyder-Mackler L (2008) A 10-year prospective trial of a patient management algorithm and screening examination for highly active individuals with anterior cruciate ligament injury: part 2, determinants of dynamic knee stability. Am J Sports Med 36(1):48–56CrossRefPubMedGoogle Scholar
  39. 39.
    Swanik CB, Lephart SM, Giraldo JL, Demont RG, Fu FH (1999) Reactive muscle firing of anterior cruciate ligament-injured females during functional activities. J Athl Train 34(2):121–129PubMedPubMedCentralGoogle Scholar
  40. 40.
    Berchuck M, Andriacchi TP, Bach BR, Reider B (1990) Gait adaptations by patients who have a deficient anterior cruciate ligament. J Bone Joint Surg Am 72(6):871–877CrossRefPubMedGoogle Scholar
  41. 41.
    Harrison EL, Duenkel N, Dunlop R, Russell G (1994) Evaluation of single-leg standing following anterior cruciate ligament surgery and rehabilitation. Phys Ther 74(3):245–252CrossRefPubMedGoogle Scholar
  42. 42.
    Fremerey RW, Lobenhoffer P, Zeichen J, Skutek M, Bosch U, Tscherne H (2000) Proprioception after rehabilitation and reconstruction in knees with deficiency of the anterior cruciate ligament: a prospective, longitudinal study. J Bone Joint Surg Br 82(6):801–806CrossRefPubMedGoogle Scholar
  43. 43.
    Roberts D, Andersson G, Friden T (2004) Knee joint proprioception in ACL-deficient knees is related to cartilage injury, laxity and age: a retrospective study of 54 patients. Acta Orthop Scand 75(1):78–83CrossRefPubMedGoogle Scholar
  44. 44.
    Wilk KE, Arrigo C, Andrews JR, Clancy WG (1999) Rehabilitation after anterior cruciate ligament reconstruction in the female athlete. J Athl Train 34(2):177–193PubMedPubMedCentralGoogle Scholar
  45. 45.
    Wilk KE, Reinold MM, Hooks TR (2003) Recent advances in the rehabilitation of isolated and combined anterior cruciate ligament injuries. Orthop Clin North Am 34(1):107–137CrossRefPubMedGoogle Scholar
  46. 46.
    Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978.  https://doi.org/10.1177/0363546510376053 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Sullivan PE, Markos PD, Minor MA (1982) An integrated approach to therapeutic exercise, theory, and clinical application. Reston Pub. Co., RestonGoogle Scholar
  48. 48.
    Chmielewski T, Hewett TE, Hurd WJ (2007) Principles of neuromuscular control for injury prevention and rehabilitation. In: Magee D, Zachazewski JE, Quillen WS (eds) Scientific foundations and principles of practice in musculoskeletal rehabilitation, vol 2. Saunders, St. Louis, pp 375–387Google Scholar
  49. 49.
    Diener HC, Horak FB, Nashner LM (1988) Influence of stimulus parameters on human postural responses. J Neurophysiol 59(6):1888–1905CrossRefPubMedGoogle Scholar
  50. 50.
    Nashner LM, Shupert CL, Horak FB, Black FO (1989) Organization of posture controls: an analysis of sensory and mechanical constraints. Prog Brain Res 80:411–418. discussion 395-417CrossRefPubMedGoogle Scholar
  51. 51.
    Distefano LJ, Padua DA, Blackburn JT, Garrett WE, Guskiewicz KM, Marshall SW (2010) Integrated injury prevention program improves balance and vertical jump height in children. J Strength Cond Res 24(2):332–342.  https://doi.org/10.1519/JSC.0b013e3181cc2225 CrossRefPubMedGoogle Scholar
  52. 52.
    Wilk KE, Escamilla RF, Fleisig GS, Barrentine SW, Andrews JR, Boyd ML (1996) A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am J Sports Med 24(4):518–527CrossRefPubMedGoogle Scholar
  53. 53.
    Wilk KE, Macrina LC, Cain EL, Dugas JR, Andrews JR (2012) Recent advances in the rehabilitation of anterior cruciate ligament injuries. J Orthop Sports Phys Ther 42(3):153–171.  https://doi.org/10.2519/jospt.2012.3741 CrossRefPubMedGoogle Scholar
  54. 54.
    Wilk KE, Voight ML, Keirns MA, Gambetta V, Andrews JR, Dillman CJ (1993) Stretch-shortening drills for the upper extremities: theory and clinical application. J Orthop Sports Phys Ther 17(5):225–239CrossRefPubMedGoogle Scholar
  55. 55.
    Snyder-Mackler L, Delitto A, Bailey SL, Stralka SW (1995) Strength of the quadriceps femoris muscle and functional recovery after reconstruction of the anterior cruciate ligament. A prospective, randomized clinical trial of electrical stimulation. J Bone Joint Surg Am 77(8):1166–1173CrossRefPubMedGoogle Scholar
  56. 56.
    Hurd WJ, Chmielewski TL, Snyder-Mackler L (2006) Perturbation-enhanced neuromuscular training alters muscle activity in female athletes. Knee Surg Sports Traumatol Arthrosc 14(1):60–69CrossRefPubMedGoogle Scholar
  57. 57.
    Grooms D, Appelbaum G, Onate J (2015) Neuroplasticity following anterior cruciate ligament injury: a framework for visual-motor training approaches in rehabilitation. J Orthop Sports Phys Ther 45(5):381–393.  https://doi.org/10.2519/jospt.2015.5549 CrossRefPubMedGoogle Scholar
  58. 58.
    Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR (1999) The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med 27(6):699–706CrossRefPubMedGoogle Scholar
  59. 59.
    Labella CR, Huxford MR, Grissom J, Kim KY, Peng J, Christoffel KK (2011) Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools: cluster randomized controlled trial. Arch Pediatr Adolesc Med 165(11):1033–1040.  https://doi.org/10.1001/archpediatrics.2011.168 CrossRefPubMedGoogle Scholar
  60. 60.
    Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, Kirkendall DT, Garrett W Jr (2005) Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med 33(7):1003–1010.  https://doi.org/10.1177/0363546504272261 CrossRefPubMedGoogle Scholar
  61. 61.
    Durall CJ, Kernozek TW, Kersten M, Nitz M, Setz J, Beck S (2011) Associations between single-leg postural control and drop-landing mechanics in healthy women. J Sport Rehabil 20(4):406–418CrossRefPubMedGoogle Scholar
  62. 62.
    Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J (2005) The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med 33(2):197–207CrossRefPubMedGoogle Scholar
  63. 63.
    Barber-Westin SD, Smith ST, Campbell T, Noyes FR (2010) The drop-jump video screening test: retention of improvement in neuromuscular control in female volleyball players. J Strength Cond Res 24(11):3055–3062.  https://doi.org/10.1519/JSC.0b013e3181d83516 CrossRefPubMedGoogle Scholar
  64. 64.
    Hewett TE, Stroupe AL, Nance TA, Noyes FR (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24(6):765–773CrossRefPubMedGoogle Scholar
  65. 65.
    Myklebust G, Engebretsen L, Braekken IH, Skjolberg A, Olsen OE, Bahr R (2003) Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sport Med 13(2):71–78CrossRefPubMedGoogle Scholar
  66. 66.
    Barber-Westin SD, Noyes FR (2017) Decreasing the risk of anterior cruciate ligament injuries in female athletes. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 373–404CrossRefGoogle Scholar
  67. 67.
    Myer GD, Ford KR, Brent JL, Hewett TE (2006) The effects of plyometric vs. dynamic stabilization and balance training on power, balance, and landing force in female athletes. J Strength Cond Res 20(2):345–353.  https://doi.org/10.1519/R-17955.1 CrossRefPubMedGoogle Scholar
  68. 68.
    Myer GD, Ford KR, McLean SG, Hewett TE (2006) The effects of plyometric versus dynamic stabilization and balance training on lower extremity biomechanics. Am J Sports Med 34(3):445–455CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Chmielewski TL, Zeppieri G Jr, Lentz TA, Tillman SM, Moser MW, Indelicato PA, George SZ (2011) Longitudinal changes in psychosocial factors and their association with knee pain and function after anterior cruciate ligament reconstruction. Phys Ther 91(9):1355–1366.  https://doi.org/10.2522/ptj.20100277 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Woby SR, Roach NK, Urmston M, Watson PJ (2005) Psychometric properties of the TSK-11: a shortened version of the Tampa Scale for Kinesiophobia. Pain 117(1–2):137–144.  https://doi.org/10.1016/j.pain.2005.05.029 CrossRefPubMedGoogle Scholar
  71. 71.
    Snyder-Mackler L, Ladin Z, Schepsis AA, Young JC (1991) Electrical stimulation of the thigh muscles after reconstruction of the anterior cruciate ligament. Effects of electrically elicited contraction of the quadriceps femoris and hamstring muscles on gait and on strength of the thigh muscles. J Bone Joint Surg Am 73(7):1025–1036Google Scholar
  72. 72.
    Escamilla RF, Fleisig GS, Zheng N, Barrentine SW, Wilk KE, Andrews JR (1998) Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc 30(4):556–569CrossRefPubMedGoogle Scholar
  73. 73.
    Birmingham TB, Kramer JF, Inglis JT, Mooney CA, Murray LJ, Fowler PJ, Kirkley S (1998) Effect of a neoprene sleeve on knee joint position sense during sitting open kinetic chain and supine closed kinetic chain tests. Am J Sports Med 26(4):562–566CrossRefPubMedGoogle Scholar
  74. 74.
    Chmielewski TL, Wilk KE, Snyder-Mackler L (2002) Changes in weight-bearing following injury or surgical reconstruction of the ACL: relationship to quadriceps strength and function. Gait Posture 16(1):87–95CrossRefPubMedGoogle Scholar
  75. 75.
    Lattanzio PJ, Petrella RJ, Sproule JR, Fowler PJ (1997) Effects of fatigue on knee proprioception. Clin J Sport Med 7(1):22–27CrossRefPubMedGoogle Scholar
  76. 76.
    Nyland JA, Shapiro R, Stine RL, Horn TS, Ireland ML (1994) Relationship of fatigued run and rapid stop to ground reaction forces, lower extremity kinematics, and muscle activation. J Orthop Sports Phys Ther 20(3):132–137CrossRefPubMedGoogle Scholar
  77. 77.
    Wojtys EM, Wylie BB, Huston LJ (1996) The effects of muscle fatigue on neuromuscular function and anterior tibial translation in healthy knees. Am J Sports Med 24(5):615–621CrossRefPubMedGoogle Scholar
  78. 78.
    Flynn TW, Soutas-Little RW (1993) Mechanical power and muscle action during forward and backward running. J Orthop Sports Phys Ther 17(2):108–112CrossRefPubMedGoogle Scholar
  79. 79.
    Barber SD, Noyes FR, Mangine RE, McCloskey JW, Hartman W (1990) Quantitative assessment of functional limitations in normal and anterior cruciate ligament-deficient knees. Clin Orthop Relat Res 255:204–214Google Scholar
  80. 80.
    Noyes FR, Barber SD, Mangine RE (1991) Abnormal lower limb symmetry determined by function hop tests after anterior cruciate ligament rupture. Am J Sports Med 19(5):513–518CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kevin E. Wilk
    • 1
  1. 1.Champion Sports MedicineBirminghamUSA

Personalised recommendations