Advertisement

Recovery of Hip Muscle Strength After ACL Injury and Reconstruction: Implications for Reducing the Risk of Reinjury

  • Sanjeev Bhatia
  • Jorge Chahla
  • Mark E. Cinque
  • Michael B. Ellman
Chapter

Abstract

Recovery of lower extremity muscular strength and neuromuscular control are two of the most vital aspects of anterior cruciate ligament (ACL) rehabilitation, as well as efforts to prevent noncontact ACL injury. There is strong evidence regarding the association between decreased hip range of motion, particularly internal and external rotation, and noncontact ACL injury. Given that females are at greater risk for ACL injury compared with males, increased emphasis has been placed on identifying risk factors in the hip as well as throughout the kinetic chain for this injury. In this chapter, we discuss the relationship between hip and knee injury patterns and its implications for ACL reconstruction and rehabilitation and noncontact ACL injury prevention efforts.

Keywords

Hip mechanics FAI–ACL injury Hip rehabilitation Hip muscle 

References

  1. 1.
    Petersen W, Taheri P, Forkel P, Zantop T (2014) Return to play following ACL reconstruction: a systematic review about strength deficits. Arch Orthop Trauma Surg 134(10):1417–1428.  https://doi.org/10.1007/s00402-014-1992-x CrossRefPubMedGoogle Scholar
  2. 2.
    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23(12):1320–1325. e1326CrossRefPubMedGoogle Scholar
  3. 3.
    Alentorn-Geli E, Myer GD, Silvers HJ, Samitier G, Romero D, Lazaro-Haro C, Cugat R (2009) Prevention of non-contact anterior cruciate ligament injuries in soccer players. Part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee Surg Sports Traumatol Arthrosc 17(8):859–879.  https://doi.org/10.1007/s00167-009-0823-z CrossRefPubMedGoogle Scholar
  4. 4.
    Noyes FR, Barber-Westin SD (2014) Neuromuscular retraining intervention programs: do they reduce noncontact anterior cruciate ligament injury rates in adolescent female athletes? Arthroscopy 30(2):245–255.  https://doi.org/10.1016/j.arthro.2013.10.009 CrossRefPubMedGoogle Scholar
  5. 5.
    Myklebust G, Engebretsen L, Braekken IH, Skjolberg A, Olsen OE, Bahr R (2003) Prevention of anterior cruciate ligament injuries in female team handball players: a prospective intervention study over three seasons. Clin J Sport Med 13(2):71–78CrossRefPubMedGoogle Scholar
  6. 6.
    Khayambashi K, Ghoddosi N, Straub RK, Powers CM (2016) Hip muscle strength predicts noncontact anterior cruciate ligament injury in male and female athletes: a prospective study. Am J Sports Med 44(2):355–361.  https://doi.org/10.1177/0363546515616237 CrossRefPubMedGoogle Scholar
  7. 7.
    Dunn WR, Lyman S, Lincoln AE, Amoroso PJ, Wickiewicz T, Marx RG (2004) The effect of anterior cruciate ligament reconstruction on the risk of knee reinjury. Am J Sports Med 32(8):1906–1914CrossRefPubMedGoogle Scholar
  8. 8.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769CrossRefPubMedGoogle Scholar
  9. 9.
    Louboutin H, Debarge R, Richou J, Selmi TA, Donell ST, Neyret P, Dubrana F (2009) Osteoarthritis in patients with anterior cruciate ligament rupture: a review of risk factors. Knee 16(4):239–244.  https://doi.org/10.1016/j.knee.2008.11.004 CrossRefPubMedGoogle Scholar
  10. 10.
    Uhorchak JM, Scoville CR, Williams GN, Arciero RA, St Pierre P, Taylor DC (2003) Risk factors associated with noncontact injury of the anterior cruciate ligament: a prospective four-year evaluation of 859 West Point cadets. Am J Sports Med 31(6):831–842CrossRefPubMedGoogle Scholar
  11. 11.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMedGoogle Scholar
  12. 12.
    Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE (2007) Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. Am J Sports Med 35(2):235–241CrossRefPubMedGoogle Scholar
  13. 13.
    Khowailed IA, Petrofsky J, Lohman E, Daher N, Mohamed O (2015) 17beta-Estradiol induced effects on anterior cruciate ligament laxness and neuromuscular activation patterns in female runners. J Womens Health (Larchmt) 24(8):670–680.  https://doi.org/10.1089/jwh.2014.5184 CrossRefGoogle Scholar
  14. 14.
    Chahla J, Arroquy D, Herrera GP, Orlowski B, Guinazu J, Carboni M, Vilaseca T (2014) Lesion del Ligamento Cruzado Anterior: Es la disminucion en la movilidad de la cadera un factor predisponente? Arthroscopia 21:4Google Scholar
  15. 15.
    Philippon M, Dewing C, Briggs K, Steadman JR (2012) Decreased femoral head-neck offset: a possible risk factor for ACL injury. Knee Surg Sports Traumatol Arthrosc 20(12):2585–2589.  https://doi.org/10.1007/s00167-012-1881-1 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Gomes JL, de Castro JV, Becker R (2008) Decreased hip range of motion and noncontact injuries of the anterior cruciate ligament. Arthroscopy 24 (9):1034–1037. doi: https://doi.org/10.1016/j.arthro.2008.05.012
  17. 17.
    Lopes OV Jr, Gomes JL, de Freitas Spinelli L (2016) Range of motion and radiographic analysis of the hip in patients with contact and non-contact anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 24(9):2868–2873.  https://doi.org/10.1007/s00167-015-3532-9 CrossRefPubMedGoogle Scholar
  18. 18.
    Tainaka K, Takizawa T, Kobayashi H, Umimura M (2014) Limited hip rotation and non-contact anterior cruciate ligament injury: a case-control study. Knee 21(1):86–90.  https://doi.org/10.1016/j.knee.2013.07.006 CrossRefPubMedGoogle Scholar
  19. 19.
    Ellera Gomes JL, Palma HM, Becker R (2010) Radiographic findings in restrained hip joints associated with ACL rupture. Knee Surg Sports Traumatol Arthrosc 18(11):1562–1567.  https://doi.org/10.1007/s00167-010-1175-4 CrossRefPubMedGoogle Scholar
  20. 20.
    Gomez E, DeLee JC, Farney WC (1996) Incidence of injury in Texas girls’ high school basketball. Am J Sports Med 24(5):684–687CrossRefPubMedGoogle Scholar
  21. 21.
    Ellera Gomes JL, Palma HM, Ruthner R (2014) Influence of hip restriction on noncontact ACL rerupture. Knee Surg Sports Traumatol Arthrosc 22(1):188–191.  https://doi.org/10.1007/s00167-012-2348-0 CrossRefPubMedGoogle Scholar
  22. 22.
    Bedi A, Warren RF, Wojtys EM, Oh YK, Ashton-Miller JA, Oltean H, Kelly BT (2016) Restriction in hip internal rotation is associated with an increased risk of ACL injury. Knee Surg Sports Traumatol Arthrosc 24(6):2024–2031.  https://doi.org/10.1007/s00167-014-3299-4 CrossRefPubMedGoogle Scholar
  23. 23.
    Yamazaki J, Muneta T, Ju YJ, Morito T, Okuwaki T, Sekiya I (2011) Hip acetabular dysplasia and joint laxity of female anterior cruciate ligament-injured patients. Am J Sports Med 39(2):410–414.  https://doi.org/10.1177/0363546510381588 CrossRefPubMedGoogle Scholar
  24. 24.
    Beaulieu ML, Oh YK, Bedi A, Ashton-Miller JA, Wojtys EM (2014) Does limited internal femoral rotation increase peak anterior cruciate ligament strain during a simulated pivot landing? Am J Sports Med 42(12):2955–2963.  https://doi.org/10.1177/0363546514549446 CrossRefPubMedGoogle Scholar
  25. 25.
    Girard J, Krantz N, Bocquet D, Wavreille G, Migaud H (2012) Femoral head to neck offset after hip resurfacing is critical for range of motion. Clin Biomech (Bristol, Avon) 27(2):165–169.  https://doi.org/10.1016/j.clinbiomech.2011.08.013 CrossRefGoogle Scholar
  26. 26.
    Imwalle LE, Myer GD, Ford KR, Hewett TE (2009) Relationship between hip and knee kinematics in athletic women during cutting maneuvers: a possible link to noncontact anterior cruciate ligament injury and prevention. J Strength Cond Res 23(8):2223–2230.  https://doi.org/10.1519/JSC.0b013e3181bc1a02 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Leetun DT, Ireland ML, Willson JD, Ballantyne BT, Davis IM (2004) Core stability measures as risk factors for lower extremity injury in athletes. Med Sci Sports Exerc 36(6):926–934CrossRefPubMedGoogle Scholar
  28. 28.
    Brent JL, Myer GD, Ford KR, Paterno MV, Hewett TE (2013) The effect of sex and age on isokinetic hip-abduction torques. J Sport Rehabil 22(1):41–46CrossRefPubMedGoogle Scholar
  29. 29.
    Ganz R, Parvizi J, Beck M, Leunig M, Notzli H, Siebenrock KA (2003) Femoroacetabular impingement: a cause for osteoarthritis of the hip. Clin Orthop Relat Res 417:112–120.  https://doi.org/10.1097/01.blo.0000096804.78689.c2 CrossRefGoogle Scholar
  30. 30.
    Siebenrock KA, Wahab KH, Werlen S, Kalhor M, Leunig M, Ganz R (2004) Abnormal extension of the femoral head epiphysis as a cause of cam impingement. Clin Orthop Relat Res 418:54–60CrossRefGoogle Scholar
  31. 31.
    Beck M, Kalhor M, Leunig M, Ganz R (2005) Hip morphology influences the pattern of damage to the acetabular cartilage: femoroacetabular impingement as a cause of early osteoarthritis of the hip. J Bone Joint Surg Br 87(7):1012–1018.  https://doi.org/10.1302/0301-620X.87B7.15203 CrossRefPubMedGoogle Scholar
  32. 32.
    Johnston TL, Schenker ML, Briggs KK, Philippon MJ (2008) Relationship between offset angle alpha and hip chondral injury in femoroacetabular impingement. Arthroscopy 24(6):669–675.  https://doi.org/10.1016/j.arthro.2008.01.010 CrossRefPubMedGoogle Scholar
  33. 33.
    Bhatia S, Nowak DD, Briggs KK, Patterson DC, Philippon MJ (2016) Outerbridge grade IV cartilage lesions in the hip identified at arthroscopy. Arthroscopy 32(5):814–819.  https://doi.org/10.1016/j.arthro.2015.11.053 CrossRefPubMedGoogle Scholar
  34. 34.
    Ho CP, Ommen ND, Bhatia S, Saroki AJ, Goljan P, Briggs KK, Philippon MJ (2016) Predictive value of 3-T magnetic resonance imaging in diagnosing grade 3 and 4 Chondral lesions in the hip. Arthroscopy 32(9):1808–1813.  https://doi.org/10.1016/j.arthro.2016.03.014 CrossRefPubMedGoogle Scholar
  35. 35.
    Frank JM, Harris JD, Erickson BJ, Slikker W 3rd, Bush-Joseph CA, Salata MJ, Nho SJ (2015) Prevalence of femoroacetabular impingement imaging findings in asymptomatic volunteers: a systematic review. Arthroscopy 31(6):1199–1204.  https://doi.org/10.1016/j.arthro.2014.11.042 CrossRefPubMedGoogle Scholar
  36. 36.
    Register B, Pennock AT, Ho CP, Strickland CD, Lawand A, Philippon MJ (2012) Prevalence of abnormal hip findings in asymptomatic participants: a prospective, blinded study. Am J Sports Med 40(12):2720–2724.  https://doi.org/10.1177/0363546512462124 CrossRefPubMedGoogle Scholar
  37. 37.
    Nepple JJ, Clohisy JC, Members ASG (2017) Evolution of femoroacetabular impingement treatment: the ANCHOR experience. Am J Orthop (Belle Mead NJ) 46(1):28–34Google Scholar
  38. 38.
    Siebenrock KA, Ferner F, Noble PC, Santore RF, Werlen S, Mamisch TC (2011) The cam-type deformity of the proximal femur arises in childhood in response to vigorous sporting activity. Clin Orthop Relat Res 469(11):3229–3240.  https://doi.org/10.1007/s11999-011-1945-4 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Thomas GE, Palmer AJ, Batra RN, Kiran A, Hart D, Spector T, Javaid MK, Judge A, Murray DW, Carr AJ, Arden NK, Glyn-Jones S (2014) Subclinical deformities of the hip are significant predictors of radiographic osteoarthritis and joint replacement in women. A 20 year longitudinal cohort study. Osteoarthr Cartil 22(10):1504–1510.  https://doi.org/10.1016/j.joca.2014.06.038 CrossRefPubMedGoogle Scholar
  40. 40.
    Nepple JJ, Vigdorchik JM, Clohisy JC (2015) What is the association between sports participation and the development of proximal femoral cam deformity? A systematic review and meta-analysis. Am J Sports Med 43(11):2833–2840.  https://doi.org/10.1177/0363546514563909 CrossRefPubMedGoogle Scholar
  41. 41.
    Agricola R, Waarsing JH, Arden NK, Carr AJ, Bierma-Zeinstra SM, Thomas GE, Weinans H, Glyn-Jones S (2013) Cam impingement of the hip: a risk factor for hip osteoarthritis. Nat Rev Rheumatol 9(10):630–634.  https://doi.org/10.1038/nrrheum.2013.114 CrossRefPubMedGoogle Scholar
  42. 42.
    Anderson LA, Kapron AL, Aoki SK, Peters CL (2012) Coxa profunda: is the deep acetabulum overcovered? Clin Orthop Relat Res 470(12):3375–3382.  https://doi.org/10.1007/s11999-012-2509-y CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Siebenrock KA, Kalbermatten DF, Ganz R (2003) Effect of pelvic tilt on acetabular retroversion: a study of pelves from cadavers. Clin Orthop Relat Res 407:241–248CrossRefGoogle Scholar
  44. 44.
    Ross JR, Nepple JJ, Philippon MJ, Kelly BT, Larson CM, Bedi A (2014) Effect of changes in pelvic tilt on range of motion to impingement and radiographic parameters of acetabular morphologic characteristics. Am J Sports Med 42(10):2402–2409.  https://doi.org/10.1177/0363546514541229 CrossRefPubMedGoogle Scholar
  45. 45.
    Zaltz I, Kelly BT, Hetsroni I, Bedi A (2013) The crossover sign overestimates acetabular retroversion. Clin Orthop Relat Res 471(8):2463–2470.  https://doi.org/10.1007/s11999-012-2689-5 CrossRefPubMedGoogle Scholar
  46. 46.
    Nepple JJ, Prather H, Trousdale RT, Clohisy JC, Beaule PE, Glyn-Jones S, Rakhra K, Kim YJ (2013) Diagnostic imaging of femoroacetabular impingement. J Am Acad Orthop Surg 21(Suppl 1):S20–S26.  https://doi.org/10.5435/JAAOS-21-07-S20 CrossRefPubMedGoogle Scholar
  47. 47.
    Philippon MJ, Schenker ML (2006) Arthroscopy for the treatment of femoroacetabular impingement in the athlete. Clin Sports Med 25(2):299–308., ix.  https://doi.org/10.1016/j.csm.2005.12.006 CrossRefPubMedGoogle Scholar
  48. 48.
    DiStefano LJ, Marshall SW, Padua DA, Peck KY, Beutler AI, de la Motte SJ, Frank BS, Martinez JC, Cameron KL (2016) The effects of an injury prevention program on landing biomechanics over time. Am J Sports Med 44(3):767–776.  https://doi.org/10.1177/0363546515621270 CrossRefPubMedGoogle Scholar
  49. 49.
    Chen JL, Allen CR, Stephens TE, Haas AK, Huston LJ, Wright RW, Feeley BT (2013) Differences in mechanisms of failure, intraoperative findings, and surgical characteristics between single- and multiple-revision ACL reconstructions: a MARS cohort study. Am J Sports Med 41(7):1571–1578.  https://doi.org/10.1177/0363546513487980 CrossRefPubMedGoogle Scholar
  50. 50.
    Hiemstra LA, Gofton WT, Kriellaars DJ (2005) Hip strength following hamstring tendon anterior cruciate ligament reconstruction. Clin J Sport Med 15(3):180–182CrossRefPubMedGoogle Scholar
  51. 51.
    Bryant AL, Clark RA, Pua YH (2011) Morphology of hamstring torque-time curves following ACL injury and reconstruction: mechanisms and implications. J Orthop Res 29(6):907–914.  https://doi.org/10.1002/jor.21306 CrossRefPubMedGoogle Scholar
  52. 52.
    Keays SL, Bullock-Saxton JE, Newcombe P, Keays AC (2003) The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Res 21(2):231–237.  https://doi.org/10.1016/S0736-0266(02)00160-2 CrossRefPubMedGoogle Scholar
  53. 53.
    Myer GD, Ford KR, Barber Foss KD, Liu C, Nick TG, Hewett TE (2009) The relationship of hamstrings and quadriceps strength to anterior cruciate ligament injury in female athletes. Clin J Sport Med 19(1):3–8.  https://doi.org/10.1097/JSM.0b013e318190bddb CrossRefPubMedGoogle Scholar
  54. 54.
    Myer GD, Ford KR, Khoury J, Succop P, Hewett TE (2011) Biomechanics laboratory-based prediction algorithm to identify female athletes with high knee loads that increase risk of ACL injury. Br J Sports Med 45(4):245–252.  https://doi.org/10.1136/bjsm.2009.069351 CrossRefPubMedGoogle Scholar
  55. 55.
    Gornitzky AL, Lott A, Yellin JL, Fabricant PD, Lawrence JT, Ganley TJ (2016) Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes: a systematic review and meta-analysis. Am J Sports Med 44(10):2716–2723.  https://doi.org/10.1177/0363546515617742 CrossRefPubMedGoogle Scholar
  56. 56.
    Paterno MV, Schmitt LC, Ford KR, Rauh MJ, Myer GD, Huang B, Hewett TE (2010) Biomechanical measures during landing and postural stability predict second anterior cruciate ligament injury after anterior cruciate ligament reconstruction and return to sport. Am J Sports Med 38(10):1968–1978.  https://doi.org/10.1177/0363546510376053 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Adams D, Logerstedt DS, Hunter-Giordano A, Axe MJ, Snyder-Mackler L (2012) Current concepts for anterior cruciate ligament reconstruction: a criterion-based rehabilitation progression. J Orthop Sports Phys Ther 42(7):601–614.  https://doi.org/10.2519/jospt.2012.3871 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) Deficits in neuromuscular control of the trunk predict knee injury risk: a prospective biomechanical-epidemiologic study. Am J Sports Med 35(7):1123–1130CrossRefPubMedGoogle Scholar
  59. 59.
    Zazulak BT, Hewett TE, Reeves NP, Goldberg B, Cholewicki J (2007) The effects of core proprioception on knee injury: a prospective biomechanical-epidemiological study. Am J Sports Med 35(3):368–373CrossRefPubMedGoogle Scholar
  60. 60.
    Stearns KM, Powers CM (2014) Improvements in hip muscle performance result in increased use of the hip extensors and abductors during a landing task. Am J Sports Med 42(3):602–609.  https://doi.org/10.1177/0363546513518410 CrossRefPubMedGoogle Scholar
  61. 61.
    Grindem H, Logerstedt D, Eitzen I, Moksnes H, Axe MJ, Snyder-Mackler L, Engebretsen L, Risberg MA (2011) Single-legged hop tests as predictors of self-reported knee function in nonoperatively treated individuals with anterior cruciate ligament injury. Am J Sports Med 39(11):2347–2354.  https://doi.org/10.1177/0363546511417085 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Arden N, Richette P, Cooper C, Bruyere O, Abadie E, Branco J, Brandi ML, Berenbaum F, Clerc C, Dennison E, Devogelaer JP, Hochberg M, D’Hooghe P, Herrero-Beaumont G, Kanis JA, Laslop A, Leblanc V, Maggi S, Mautone G, Pelletier JP, Petit-Dop F, Reiter-Niesert S, Rizzoli R, Rovati L, Tajana Messi E, Tsouderos Y, Martel-Pelletier J, Reginster JY (2015) Can we identify patients with high risk of osteoarthritis progression who will respond to treatment? A focus on biomarkers and frailty. Drugs Aging 32(7):525–535.  https://doi.org/10.1007/s40266-015-0276-7 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Dempsey AR, Elliott BC, Munro BJ, Steele JR, Lloyd DG (2012) Whole body kinematics and knee moments that occur during an overhead catch and landing task in sport. Clin Biomech (Bristol, Avon) 27(5):466–474.  https://doi.org/10.1016/j.clinbiomech.2011.12.001 CrossRefGoogle Scholar
  64. 64.
    Ferguson SJ, Bryant JT, Ganz R, Ito K (2003) An in vitro investigation of the acetabular labral seal in hip joint mechanics. J Biomech 36(2):171–178CrossRefPubMedGoogle Scholar
  65. 65.
    Nepple JJ, Philippon MJ, Campbell KJ, Dornan GJ, Jansson KS, LaPrade RF, Wijdicks CA (2014) The hip fluid seal—Part II: the effect of an acetabular labral tear, repair, resection, and reconstruction on hip stability to distraction. Knee Surg Sports Traumatol Arthrosc 22(4):730–736.  https://doi.org/10.1007/s00167-014-2875-y CrossRefPubMedGoogle Scholar
  66. 66.
    Philippon MJ, Nepple JJ, Campbell KJ, Dornan GJ, Jansson KS, LaPrade RF, Wijdicks CA (2014) The hip fluid seal—Part I: the effect of an acetabular labral tear, repair, resection, and reconstruction on hip fluid pressurization. Knee Surg Sports Traumatol Arthrosc 22(4):722–729.  https://doi.org/10.1007/s00167-014-2874-z CrossRefPubMedGoogle Scholar
  67. 67.
    Espinosa N, Rothenfluh DA, Beck M, Ganz R, Leunig M (2006) Treatment of femoro-acetabular impingement: preliminary results of labral refixation. J Bone Joint Surg Am 88(5):925–935.  https://doi.org/10.2106/JBJS.E.00290 CrossRefPubMedGoogle Scholar
  68. 68.
    Krych AJ, Thompson M, Knutson Z, Scoon J, Coleman SH (2013) Arthroscopic labral repair versus selective labral debridement in female patients with femoroacetabular impingement: a prospective randomized study. Arthroscopy 29(1):46–53.  https://doi.org/10.1016/j.arthro.2012.07.011 CrossRefPubMedGoogle Scholar
  69. 69.
    Bedi A, Zaltz I, De La Torre K, Kelly BT (2011) Radiographic comparison of surgical hip dislocation and hip arthroscopy for treatment of cam deformity in femoroacetabular impingement. Am J Sports Med 39(Suppl):20S–28S.  https://doi.org/10.1177/0363546511412734 CrossRefPubMedGoogle Scholar
  70. 70.
    Bogunovic L, Gottlieb M, Pashos G, Baca G, Clohisy JC (2013) Why do hip arthroscopy procedures fail? Clin Orthop Relat Res 471(8):2523–2529.  https://doi.org/10.1007/s11999-013-3015-6 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Hewett TE, Stroupe AL, Nance TA, Noyes FR (1996) Plyometric training in female athletes. Decreased impact forces and increased hamstring torques. Am J Sports Med 24(6):765–773CrossRefPubMedGoogle Scholar
  72. 72.
    Vincent KR, Herman DC (2017) AAOS appropriate use criteria: anterior cruciate ligament injury prevention programs. J Am Acad Orthop Surg 25(4):e83–e86.  https://doi.org/10.5435/JAAOS-D-16-00755 CrossRefPubMedGoogle Scholar
  73. 73.
    Noyes FR, Barber-Westin SD, Smith ST, Campbell T (2011) A training program to improve neuromuscular indices in female high school volleyball players. J Strength Cond Res 25(8):2151–2160.  https://doi.org/10.1519/JSC.0b013e3181f906ef CrossRefPubMedGoogle Scholar
  74. 74.
    Noyes FR, Barber-Westin SD, Tutalo Smith ST, Campbell T (2013) A training program to improve neuromuscular and performance indices in female high school soccer players. J Strength Cond Res 27(2):340–351.  https://doi.org/10.1519/JSC.0b013e31825423d9 CrossRefPubMedGoogle Scholar
  75. 75.
    Noyes FR, Barber-Westin SD, Smith ST, Campbell T, Garrison TT (2012) A training program to improve neuromuscular and performance indices in female high school basketball players. J Strength Cond Res 26(3):709–719.  https://doi.org/10.1519/JSC.0b013e318228194c CrossRefPubMedGoogle Scholar
  76. 76.
    Barber-Westin SD, Hermeto A, Noyes FR (2015) A six-week neuromuscular and performance training program improves speed, agility, dynamic balance, and core endurance in junior tennis players. J Athl Enhanc 4:1.  https://doi.org/10.4172/2324-9080.1000185 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sanjeev Bhatia
    • 1
  • Jorge Chahla
    • 2
  • Mark E. Cinque
    • 3
  • Michael B. Ellman
    • 4
  1. 1.Hip Arthroscopy and Joint Preservation CenterCincinnati Sports Medicine and Orthopaedic Center, Mercy HealthCincinnatiUSA
  2. 2.Steadman-Philippon Research InstituteVailUSA
  3. 3.Stanford School of MedicineStanford UniversityStanfordUSA
  4. 4.Hip Arthroscopy and Joint PreservationPanorama Orthopedics & Spine CenterDenverUSA

Personalised recommendations