Advertisement

The ACL: Anatomy, Biomechanics, Mechanisms of Injury, and the Gender Disparity

  • Frank R. Noyes
  • Sue Barber-Westin
Chapter

Abstract

This chapter summarizes the current knowledge regarding ACL anatomy, biomechanics, common injury mechanisms, and the differences in ACL injury rates between male and female athletes. At least two-thirds of ACL tears occur during noncontact situations such as cutting, pivoting, accelerating, decelerating, and landing from a jump. Reduced knee flexion angles, increased hip flexion angles, valgus collapse at the knee, increased hip internal rotation, and increased internal or external tibial rotation are frequently reported at the time of or just prior to ACL injury. Female athletes are at greater risk for sustaining an ACL injury compared with male athletes participating in soccer, basketball, rugby, and handball. Research has shown that comprehensive training programs can effectively “reprogram” the neuromuscular system to avoid potentially dangerous body mechanics and positions.

Keywords

ACL anatomy ACL biomechanics ACL injury Rotational stability 

References

  1. 1.
    Sanders TL, Maradit Kremers H, Bryan AJ, Larson DR, Dahm DL, Levy BA, Stuart MJ, Krych AJ (2016b) Incidence of anterior cruciate ligament tears and reconstruction: a 21-year population-based study. Am J Sports Med 44(6):1502–1507.  https://doi.org/10.1177/0363546516629944 CrossRefPubMedGoogle Scholar
  2. 2.
    Nordenvall R, Bahmanyar S, Adami J, Stenros C, Wredmark T, Fellander-Tsai L (2012) A population-based nationwide study of cruciate ligament injury in Sweden, 2001–2009: incidence, treatment, and sex differences. Am J Sports Med 40(8):1808–1813.  https://doi.org/10.1177/0363546512449306 CrossRefPubMedGoogle Scholar
  3. 3.
    Beck NA, Lawrence JT, Nordin JD, DeFor TA, Tompkins M (2017) ACL tears in school-aged children and adolescents over 20 years. Pediatrics 139(3).  https://doi.org/10.1542/peds.2016-1877
  4. 4.
    Collins JE, Katz JN, Donnell-Fink LA, Martin SD, Losina E (2013) Cumulative incidence of ACL reconstruction after ACL injury in adults: role of age, sex, and race. Am J Sports Med 41(3):544–549.  https://doi.org/10.1177/0363546512472042 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Johnsen MB, Guddal MH, Smastuen MC, Moksnes H, Engebretsen L, Storheim K, Zwart JA (2016) Sport participation and the risk of anterior cruciate ligament reconstruction in adolescents: a Population-based Prospective Cohort Study (The Young-HUNT Study). Am J Sports Med 44(11):2917–2924.  https://doi.org/10.1177/0363546516643807 CrossRefPubMedGoogle Scholar
  6. 6.
    Labella CR, Hennrikus W, Hewett TE, Council on Sports Medicine and Fitness, Section On Orthopaedics (2014) Anterior cruciate ligament injuries: diagnosis, treatment, and prevention. Pediatrics 133(5).  https://doi.org/10.1542/peds.2014-0623
  7. 7.
    Mall NA, Chalmers PN, Moric M, Tanaka MJ, Cole BJ, Bach BR Jr, Paletta GA Jr (2014) Incidence and trends of anterior cruciate ligament reconstruction in the United States. Am J Sports Med 42(10):2363–2370.  https://doi.org/10.1177/0363546514542796 CrossRefPubMedGoogle Scholar
  8. 8.
    Joseph AM, Collins CL, Henke NM, Yard EE, Fields SK, Comstock RD (2013) A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics. J Athl Train 48(6):810–817.  https://doi.org/10.4085/1062-6050-48.6.03 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Shimokochi Y, Shultz SJ (2008) Mechanisms of noncontact anterior cruciate ligament injury. J Athl Train 43(4):396–408CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Boden BP, Torg JS, Knowles SB, Hewett TE (2009) Video analysis of anterior cruciate ligament injury: abnormalities in hip and ankle kinematics. Am J Sports Med 37(2):252–259.  https://doi.org/10.1177/0363546508328107 CrossRefPubMedGoogle Scholar
  11. 11.
    Koga H, Nakamae A, Shima Y, Iwasa J, Myklebust G, Engebretsen L, Bahr R, Krosshaug T (2010) Mechanisms for noncontact anterior cruciate ligament injuries: knee joint kinematics in 10 injury situations from female team handball and basketball. Am J Sports Med 38(11):2218–2225.  https://doi.org/10.1177/0363546510373570 CrossRefPubMedGoogle Scholar
  12. 12.
    Ajuied A, Wong F, Smith C, Norris M, Earnshaw P, Back D, Davies A (2014) Anterior cruciate ligament injury and radiologic progression of knee osteoarthritis: a systematic review and meta-analysis. Am J Sports Med 42(9):2242–2252.  https://doi.org/10.1177/0363546513508376 CrossRefPubMedGoogle Scholar
  13. 13.
    Claes S, Hermie L, Verdonk R, Bellemans J, Verdonk P (2013) Is osteoarthritis an inevitable consequence of anterior cruciate ligament reconstruction? A meta-analysis. Knee Surg Sports Traumatol Arthrosc 21(9):1967–1976.  https://doi.org/10.1007/s00167-012-2251-8 CrossRefPubMedGoogle Scholar
  14. 14.
    Li H, Chen S, Tao H, Chen S (2015) Quantitative MRI T2 relaxation time evaluation of knee cartilage: comparison of meniscus-intact and -injured knees after anterior cruciate ligament reconstruction. Am J Sports Med 43(4):865–872.  https://doi.org/10.1177/0363546514564151 CrossRefPubMedGoogle Scholar
  15. 15.
    Mather RC 3rd, Koenig L, Kocher MS, Dall TM, Gallo P, Scott DJ, Bach BR Jr, Spindler KP, Group MK (2013) Societal and economic impact of anterior cruciate ligament tears. J Bone Joint Surg Am 95(19):1751–1759.  https://doi.org/10.2106/JBJS.L.01705 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Risberg MA, Oiestad BE, Gunderson R, Aune AK, Engebretsen L, Culvenor A, Holm I (2016) Changes in knee osteoarthritis, symptoms, and function after anterior cruciate ligament reconstruction: a 20-year prospective follow-up study. Am J Sports Med 44(5):1215–1224.  https://doi.org/10.1177/0363546515626539 CrossRefPubMedGoogle Scholar
  17. 17.
    Sanders TL, Kremers HM, Bryan AJ, Fruth KM, Larson DR, Pareek A, Levy BA, Stuart MJ, Dahm DL, Krych AJ (2016a) Is anterior cruciate ligament reconstruction effective in preventing secondary meniscal tears and osteoarthritis? Am J Sports Med 44(7):1699–1707.  https://doi.org/10.1177/0363546516634325 CrossRefPubMedGoogle Scholar
  18. 18.
    Ardern CL, Taylor NF, Feller JA, Whitehead TS, Webster KE (2013) Psychological responses matter in returning to preinjury level of sport after anterior cruciate ligament reconstruction surgery. Am J Sports Med 41(7):1549–1558.  https://doi.org/10.1177/0363546513489284 CrossRefPubMedGoogle Scholar
  19. 19.
    Lentz TA, Zeppieri G Jr, George SZ, Tillman SM, Moser MW, Farmer KW, Chmielewski TL (2015) Comparison of physical impairment, functional, and psychosocial measures based on fear of reinjury/lack of confidence and return-to-sport status after ACL reconstruction. Am J Sports Med 43(2):345–353.  https://doi.org/10.1177/0363546514559707 CrossRefPubMedGoogle Scholar
  20. 20.
    Ochiai S, Hagino T, Tonotsuka H, Haro H (2010) Health-related quality of life in patients with an anterior cruciate ligament injury. Arch Orthop Trauma Surg 130(3):397–399.  https://doi.org/10.1007/s00402-009-0964-z CrossRefPubMedGoogle Scholar
  21. 21.
    Podlog L, Heil J, Schulte S (2014) Psychosocial factors in sports injury rehabilitation and return to play. Phys Med Rehabil Clin N Am 25(4):915–930.  https://doi.org/10.1016/j.pmr.2014.06.011 CrossRefPubMedGoogle Scholar
  22. 22.
    Arendt E, Dick R (1995) Knee injury patterns among men and women in collegiate basketball and soccer. NCAA data and review of literature. Am J Sports Med 23(6):694–701CrossRefPubMedGoogle Scholar
  23. 23.
    Lindenfeld TN, Schmitt DJ, Hendy MP, Mangine RE, Noyes FR (1994) Incidence of injury in indoor soccer. Am J Sports Med 22(3):364–371CrossRefPubMedGoogle Scholar
  24. 24.
    Stanley LE, Kerr ZY, Dompier TP, Padua DA (2016) Sex differences in the incidence of anterior cruciate ligament, medial collateral ligament, and meniscal injuries in collegiate and high school sports: 2009–2010 through 2013–2014. Am J Sports Med 44(6):1565–1572.  https://doi.org/10.1177/0363546516630927 CrossRefPubMedGoogle Scholar
  25. 25.
    Bicer EK, Lustig S, Servien E, Selmi TA, Neyret P (2010) Current knowledge in the anatomy of the human anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 18(8):1075–1084.  https://doi.org/10.1007/s00167-009-0993-8 CrossRefPubMedGoogle Scholar
  26. 26.
    Duthon VB, Barea C, Abrassart S, Fasel JH, Fritschy D, Menetrey J (2006) Anatomy of the anterior cruciate ligament. Knee Surg Sports Traumatol Arthrosc 14(3):204–213CrossRefPubMedGoogle Scholar
  27. 27.
    Guenoun D, Vaccaro J, Le Corroller T, Barral PA, Lagier A, Pauly V, Coquart B, Coste J, Champsaur P (2017) A dynamic study of the anterior cruciate ligament of the knee using an open MRI. Surg Radiol Anat 39(3):307–314.  https://doi.org/10.1007/s00276-016-1730-x CrossRefPubMedGoogle Scholar
  28. 28.
    Kraeutler MJ, Wolsky RM, Vidal AF, Bravman JT (2017) Anatomy and biomechanics of the native and reconstructed anterior cruciate ligament: surgical implications. J Bone Joint Surg Am 99(5):438–445.  https://doi.org/10.2106/JBJS.16.00754 CrossRefPubMedGoogle Scholar
  29. 29.
    Skelley NW, Castile RM, Cannon PC, Weber CI, Brophy RH, Lake SP (2016) Regional variation in the mechanical and microstructural properties of the human anterior cruciate ligament. Am J Sports Med 44(11):2892–2899.  https://doi.org/10.1177/0363546516654480 CrossRefPubMedGoogle Scholar
  30. 30.
    Strickland J, Fester E, Noyes FR (2017) Lateral and posterior knee anatomy. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 23–35CrossRefGoogle Scholar
  31. 31.
    Amis A, Dawkins G (1991) Functional anatomy of the anterior cruciate ligament. Fibre bundle actions related to ligament replacements and injuries. J Bone Joint Surg 73B(2):260–267CrossRefGoogle Scholar
  32. 32.
    Girgis FG, Marshall JL, Monajem AL (1975) The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res 106:216–231CrossRefGoogle Scholar
  33. 33.
    Petersen W, Zantop T (2007) Anatomy of the anterior cruciate ligament with regard to its two bundles. Clin Orthop Relat Res 454:35–47CrossRefPubMedGoogle Scholar
  34. 34.
    Clemente CD (2007) Anatomy: a regional atlas of the human body, 5th edn. Lippincott Williams and Wilkins, BaltimoreGoogle Scholar
  35. 35.
    Standring S (2005) Gray’s anatomy: the anatomical basis of clinical practice. Churchill Livingstone, New YorkGoogle Scholar
  36. 36.
    Cabuk H, Kusku Cabuk F (2016) Mechanoreceptors of the ligaments and tendons around the knee. Clin Anat 29(6):789–795.  https://doi.org/10.1002/ca.22743 CrossRefPubMedGoogle Scholar
  37. 37.
    Gao F, Zhou J, He C, Ding J, Lou Z, Xie Q, Li H, Li F, Li G (2016) A morphologic and quantitative study of mechanoreceptors in the remnant stump of the human anterior cruciate ligament. Arthroscopy 32(2):273–280.  https://doi.org/10.1016/j.arthro.2015.07.010 CrossRefPubMedGoogle Scholar
  38. 38.
    Colombet P, Robinson J, Christel P, Franceschi JP, Djian P, Bellier G, Sbihi A (2006) Morphology of anterior cruciate ligament attachments for anatomic reconstruction: a cadaveric dissection and radiographic study. Arthroscopy 22(9):984–992CrossRefPubMedGoogle Scholar
  39. 39.
    Noyes FR, Barber-Westin SD (2017) Anterior cruciate ligament primary reconstruction: diagnosis, operative techniques, and clinical outcomes. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 137–220CrossRefGoogle Scholar
  40. 40.
    Noyes FR, Grood ES (2017b) The scientific basis for examination and classification of knee ligament injuries. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 83–109CrossRefGoogle Scholar
  41. 41.
    Hefzy MS, Grood ES, Noyes FR (1989) Factors affecting the region of most isometric femoral attachments. Part II: the anterior cruciate ligament. Am J Sports Med 17(2):208–216CrossRefPubMedGoogle Scholar
  42. 42.
    Sidles JA, Larson RV, Garbini JL, Downey DJ, Matsen FA III (1988) Ligament length relationship in the moving knee. J Orthop Res 6(4):593–610CrossRefPubMedGoogle Scholar
  43. 43.
    Smigielski R, Zdanowicz U, Drwiega M, Ciszek B, Williams A (2016) The anatomy of the anterior cruciate ligament and its relevance to the technique of reconstruction. Bone Joint J 98-B(8):1020–1026.  https://doi.org/10.1302/0301-620X.98B8.37117 CrossRefPubMedGoogle Scholar
  44. 44.
    Gardner EJ, Noyes FR, Jetter AW, Grood ES, Harms SP, Levy MS (2015) Effect of anteromedial and posterolateral anterior cruciate ligament bundles on resisting medial and lateral tibiofemoral compartment subluxations. Arthroscopy 31(5):901–910.  https://doi.org/10.1016/j.arthro.2014.12.009 CrossRefPubMedGoogle Scholar
  45. 45.
    Anderson AF, Dome DC, Gautam S, Awh MH, Rennirt GW (2001) Correlation of anthropometric measurements, strength, anterior cruciate ligament size, and intercondylar notch characteristics to sex differences in anterior cruciate ligament tear rates. Am J Sports Med 29(1):58–66CrossRefPubMedGoogle Scholar
  46. 46.
    Chandrashekar N, Slauterbeck J, Hashemi J (2005) Sex-based differences in the anthropometric characteristics of the anterior cruciate ligament and its relation to intercondylar notch geometry: a cadaveric study. Am J Sports Med 33(10):1492–1498CrossRefPubMedGoogle Scholar
  47. 47.
    van Diek FM, Wolf MR, Murawski CD, van Eck CF, Fu FH (2014) Knee morphology and risk factors for developing an anterior cruciate ligament rupture: an MRI comparison between ACL-ruptured and non-injured knees. Knee Surg Sports Traumatol Arthrosc 22(5):987–994.  https://doi.org/10.1007/s00167-013-2588-7 CrossRefPubMedGoogle Scholar
  48. 48.
    Pinskerova V, Nemec K, Landor I (2014) Gender differences in the morphology of the trochlea and the distal femur. Knee Surg Sports Traumatol Arthrosc 22(10):2342–2349.  https://doi.org/10.1007/s00167-014-3186-z CrossRefPubMedGoogle Scholar
  49. 49.
    Whitney DC, Sturnick DR, Vacek PM, DeSarno MJ, Gardner-Morse M, Tourville TW, Smith HC, Slauterbeck JR, Johnson RJ, Shultz SJ, Hashemi J, Beynnon BD (2014) Relationship between the risk of suffering a first-time noncontact ACL injury and geometry of the femoral notch and ACL: a prospective cohort study with a nested case-control analysis. Am J Sports Med 42(8):1796–1805.  https://doi.org/10.1177/0363546514534182 CrossRefPubMedGoogle Scholar
  50. 50.
    Weinberg DS, Williamson DF, Gebhart JJ, Knapik DM, Voos JE (2017) Differences in medial and lateral posterior tibial slope: an osteological review of 1090 tibiae comparing age, sex, and race. Am J Sports Med 45(1):106–113.  https://doi.org/10.1177/0363546516662449 CrossRefPubMedGoogle Scholar
  51. 51.
    Shultz SJ, Schmitz RJ, Benjaminse A, Collins M, Ford K, Kulas AS (2015) ACL research retreat VII: an update on anterior cruciate ligament injury risk factor identification, screening, and prevention. J Athl Train 50(10):1076–1093.  https://doi.org/10.4085/1062-6050-50.10.06 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Dejour H, Bonnin M (1994) Tibial translation after anterior cruciate ligament rupture. Two radiological tests compared. J Bone Joint Surg Br 76(5):745–749CrossRefPubMedGoogle Scholar
  53. 53.
    Giffin JR, Vogrin TM, Zantop T, Woo SL, Harner CD (2004) Effects of increasing tibial slope on the biomechanics of the knee. Am J Sports Med 32(2):376–382CrossRefPubMedGoogle Scholar
  54. 54.
    McLean SG, Lucey SM, Rohrer S, Brandon C (2010) Knee joint anatomy predicts high-risk in vivo dynamic landing knee biomechanics. Clin Biomech (Bristol, Avon) 25(8):781–788.  https://doi.org/10.1016/j.clinbiomech.2010.06.002 CrossRefGoogle Scholar
  55. 55.
    Lipps DB, Oh YK, Ashton-Miller JA, Wojtys EM (2012) Morphologic characteristics help explain the gender difference in peak anterior cruciate ligament strain during a simulated pivot landing. Am J Sports Med 40(1):32–40.  https://doi.org/10.1177/0363546511422325 CrossRefPubMedGoogle Scholar
  56. 56.
    Chandrashekar N, Mansouri H, Slauterbeck J, Hashemi J (2006) Sex-based differences in the tensile properties of the human anterior cruciate ligament. J Biomech 39(16):2943–2950.  https://doi.org/10.1016/j.jbiomech.2005.10.031 CrossRefPubMedGoogle Scholar
  57. 57.
    Butler DL, Noyes FR, Grood ES (1980) Ligamentous restraints to anterior-posterior drawer in the human knee. A biomechanical study. J Bone Joint Surg Am 62(2):259–270CrossRefPubMedGoogle Scholar
  58. 58.
    Woo SL-Y, Hollis JM, Adams DJ, Lyon RM, Takai S (1991) Tensile properties of the human femur-anterior cruciate ligament-tibia complex. The effects of specimen age and orientation. Am J Sports Med 19(3):217–225CrossRefPubMedGoogle Scholar
  59. 59.
    Noyes FR, Grood ES (2017a) Knee ligament function and failure. In: Noyes FR, Barber-Westin SD (eds) Noyes’ knee disorders: surgery, rehabilitation, clinical outcomes, 2nd edn. Elsevier, Philadelphia, pp 37–82CrossRefGoogle Scholar
  60. 60.
    Noyes FR, Grood ES (1987) Classification of ligament injuries: why an anterolateral laxity or anteromedial laxity is not a diagnostic entity. Instr Course Lect 36:185–200PubMedGoogle Scholar
  61. 61.
    Noyes FR, Grood ES, Butler DL, Malek M (1980) Clinical laxity tests and functional stability of the knee: biomechanical concepts. Clin Orthop Relat Res 146:84–89Google Scholar
  62. 62.
    Harms SP, Noyes FR, Grood ES, Jetter AW, Huser LE, Levy MS, Gardner EJ (2015) Anatomic single-graft anterior cruciate ligament reconstruction restores rotational stability: a robotic study in cadaveric knees. Arthroscopy 31(10):1981–1990.  https://doi.org/10.1016/j.arthro.2015.04.081 CrossRefPubMedGoogle Scholar
  63. 63.
    Noyes FR, Grood ES, Torzilli PA (1989) Current concepts review. The definitions of terms for motion and position of the knee and injuries of the ligaments. J Bone Joint Surg Am 71(3):465–472CrossRefPubMedGoogle Scholar
  64. 64.
    Noyes FR, Jetter AW, Grood ES, Harms SP, Gardner EJ, Levy MS (2015) Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. Am J Sports Med 43(3):683–692.  https://doi.org/10.1177/0363546514561746 CrossRefPubMedGoogle Scholar
  65. 65.
    Noyes FR, Grood ES, Cummings JF, Wroble RR (1991) An analysis of the pivot shift phenomenon. The knee motions and subluxations induced by different examiners. Am J Sports Med 19(2):148–155CrossRefPubMedGoogle Scholar
  66. 66.
    Sonnery-Cottet B, Thaunat M, Freychet B, Pupim BH, Murphy CG, Claes S (2015) Outcome of a combined anterior cruciate ligament and anterolateral ligament reconstruction technique with a minimum 2-year follow-up. Am J Sports Med 43(7):1598–1605.  https://doi.org/10.1177/0363546515571571 CrossRefPubMedGoogle Scholar
  67. 67.
    Sonnery-Cottet B, Saithna A, Cavalier M, Kajetanek C, Temponi EF, Daggett M, Helito CP, Thaunat M (2017) Anterolateral ligament reconstruction is associated with significantly reduced ACL graft rupture rates at a minimum follow-up of 2 years. Am J Sports Med 45(7):1547–1557.  https://doi.org/10.1177/0363546516686057 CrossRefPubMedGoogle Scholar
  68. 68.
    Noyes FR, Huser LE, Jurgensmeier D, Walsh J, Levy MS (2017) Is an anterolateral ligament reconstruction required in ACL-reconstructed knees with associated injury to the anterolateral structures? Am J Sports Med 45(5):1018–1027.  https://doi.org/10.1177/0363546516682233 CrossRefPubMedGoogle Scholar
  69. 69.
    Noyes FR, Huser LE, Levy MS (2017) Rotational knee instability in ACL-deficient knees: role of the anterolateral ligament and iliotibial band as defined by tibiofemoral compartment translations and rotations. J Bone Joint Surg Am 99(4):305–314.  https://doi.org/10.2106/JBJS.16.00199 CrossRefPubMedGoogle Scholar
  70. 70.
    Noyes FR, Barber SD (1991) The effect of an extra-articular procedure on allograft reconstructions for chronic ruptures of the anterior cruciate ligament. J Bone Joint Surg Am 73(6):882–892CrossRefPubMedGoogle Scholar
  71. 71.
    Huser LE, Noyes FR, Jurgensmeier D, Levy MS (2017) Anterolateral ligament and iliotibial band control of rotational stability in the anterior cruciate ligament-intact knee: defined by tibiofemoral compartment translations and rotations. Arthroscopy 33(3):595–604.  https://doi.org/10.1016/j.arthro.2016.08.034 CrossRefPubMedGoogle Scholar
  72. 72.
    Walden M, Krosshaug T, Bjorneboe J, Andersen TE, Faul O, Hagglund M (2015) Three distinct mechanisms predominate in non-contact anterior cruciate ligament injuries in male professional football players: a systematic video analysis of 39 cases. Br J Sports Med 49(22):1452–1460.  https://doi.org/10.1136/bjsports-2014-094573 CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hashemi J, Breighner R, Chandrashekar N, Hardy DM, Chaudhari AM, Shultz SJ, Slauterbeck JR, Beynnon BD (2011) Hip extension, knee flexion paradox: a new mechanism for non-contact ACL injury. J Biomech 44(4):577–585.  https://doi.org/10.1016/j.jbiomech.2010.11.013 CrossRefPubMedGoogle Scholar
  74. 74.
    Markolf KL, Burchfield DM, Shapiro MM, Shepard MF, Finerman GA, Slauterbeck JL (1995) Combined knee loading states that generate high anterior cruciate ligament forces. J Orthop Res 13(6):930–935CrossRefPubMedGoogle Scholar
  75. 75.
    Cassidy K, Hangalur G, Sabharwal P, Chandrashekar N (2013) Combined in vivo/in vitro method to study anteriomedial bundle strain in the anterior cruciate ligament using a dynamic knee simulator. J Biomech Eng 135(3):35001.  https://doi.org/10.1115/1.4023520 CrossRefPubMedGoogle Scholar
  76. 76.
    Kiapour AM, Quatman CE, Goel VK, Wordeman SC, Hewett TE, Demetropoulos CK (2014) Timing sequence of multi-planar knee kinematics revealed by physiologic cadaveric simulation of landing: implications for ACL injury mechanism. Clin Biomech (Bristol, Avon) 29(1):75–82.  https://doi.org/10.1016/j.clinbiomech.2013.10.017 CrossRefGoogle Scholar
  77. 77.
    Oh YK, Kreinbrink JL, Wojtys EM, Ashton-Miller JA (2012a) Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing. J Orthop Res 30(4):528–534.  https://doi.org/10.1002/jor.21572 CrossRefPubMedGoogle Scholar
  78. 78.
    Oh YK, Lipps DB, Ashton-Miller JA, Wojtys EM (2012b) What strains the anterior cruciate ligament during a pivot landing? Am J Sports Med 40(3):574–583.  https://doi.org/10.1177/0363546511432544 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Shin CS, Chaudhari AM, Andriacchi TP (2011) Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone. Med Sci Sports Exerc 43(8):1484–1491.  https://doi.org/10.1249/MSS.0b013e31820f8395 CrossRefPubMedGoogle Scholar
  80. 80.
    Olsen OE, Myklebust G, Engebretsen L, Bahr R (2004) Injury mechanisms for anterior cruciate ligament injuries in team handball: a systematic video analysis. Am J Sports Med 32(4):1002–1012CrossRefPubMedGoogle Scholar
  81. 81.
    Hashemi J, Breighner R, Chandrashekar N, Slauterbeck JR, Beynnon BD (2010) Letter to the editor: a framework for assessing the viability of proposed anterior cruciate ligament injury mechanisms. Am J Sports Med 38(7):NP3–NP7.  https://doi.org/10.1177/0363546510367624 CrossRefPubMedGoogle Scholar
  82. 82.
    DeMorat G, Weinhold P, Blackburn T, Chudik S, Garrett W (2004) Aggressive quadriceps loading can induce noncontact anterior cruciate ligament injury. Am J Sports Med 32(2):477–483CrossRefPubMedGoogle Scholar
  83. 83.
    Li G, Rudy TW, Sakane M, Kanamori A, Ma CB, Woo SL (1999) The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL. J Biomech 32(4):395–400CrossRefPubMedGoogle Scholar
  84. 84.
    Renstrom P, Arms SW, Stanwyck TS, Johnson RJ, Pope MH (1986) Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14(1):83–87CrossRefPubMedGoogle Scholar
  85. 85.
    Fleming BC, Renstrom PA, Ohlen G, Johnson RJ, Peura GD, Beynnon BD, Badger GJ (2001) The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. J Orthop Res 19(6):1178–1184.  https://doi.org/10.1016/S0736-0266(01)00057-2 CrossRefPubMedGoogle Scholar
  86. 86.
    MacWilliams BA, Wilson DR, DesJardins JD, Romero J, Chao EY (1999) Hamstrings cocontraction reduces internal rotation, anterior translation, and anterior cruciate ligament load in weight-bearing flexion. J Orthop Res 17(6):817–822CrossRefPubMedGoogle Scholar
  87. 87.
    More RC, Karras BT, Neiman F, Fritschy D, Woo SL-Y, Daniel DM (1993) Hamstrings-an anterior cruciate ligament protagonist: an in vitro study. Am J Sports Med 21:231–237CrossRefPubMedGoogle Scholar
  88. 88.
    Noyes FR, Sonstegard DA (1973) Biomechanical function of the pes anserinus at the knee and the effect of its transplantation. J Bone Joint Surg Am 55(6):1225–1241CrossRefPubMedGoogle Scholar
  89. 89.
    O'Connor JJ (1993) Can muscle co-contraction protect knee ligaments after injury or repair? J Bone Joint Surg Br 75(1):41–48CrossRefPubMedGoogle Scholar
  90. 90.
    Pandy MG, Shelburne KB (1997) Dependence of cruciate-ligament loading on muscle forces and external load. J Biomech 30(10):1015–1024CrossRefPubMedGoogle Scholar
  91. 91.
    Barber-Westin SD, Noyes FR, Galloway M (2006) Jump-land characteristics and muscle strength development in young athletes: a gender comparison of 1140 athletes 9 to 17 years of age. Am J Sports Med 34(3):375–384.  https://doi.org/10.1177/0363546505281242 CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Hewett TE, Myer GD, Zazulak BT (2008) Hamstrings to quadriceps peak torque ratios diverge between sexes with increasing isokinetic angular velocity. J Sci Med Sport 11(5):452–459.  https://doi.org/10.1016/j.jsams.2007.04.009 CrossRefPubMedGoogle Scholar
  93. 93.
    Pollard CD, Sigward SM, Powers CM (2010) Limited hip and knee flexion during landing is associated with increased frontal plane knee motion and moments. Clin Biomech (Bristol, Avon) 25(2):142–146.  https://doi.org/10.1016/j.clinbiomech.2009.10.005 CrossRefGoogle Scholar
  94. 94.
    Colby S, Francisco A, Yu B, Kirkendall D, Finch M, Garrett W Jr (2000) Electromyographic and kinematic analysis of cutting maneuvers. Implications for anterior cruciate ligament injury. Am J Sports Med 28(2):234–240CrossRefPubMedGoogle Scholar
  95. 95.
    Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23(6):573–578PubMedGoogle Scholar
  96. 96.
    Brophy RH, Stepan JG, Silvers HJ, Mandelbaum BR (2015) Defending puts the anterior cruciate ligament at risk during soccer: a gender-based analysis. Sports Health 7(3):244–249.  https://doi.org/10.1177/1941738114535184 CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Carlson VR, Sheehan FT, Boden BP (2016) Video analysis of anterior cruciate ligament (ACL) injuries: a systematic review. JBJS Rev 4(11).  https://doi.org/10.2106/JBJS.RVW.15.00116
  98. 98.
    Cochrane JL, Lloyd DG, Buttfield A, Seward H, McGivern J (2007) Characteristics of anterior cruciate ligament injuries in Australian football. J Sci Med Sport 10(2):96–104.  https://doi.org/10.1016/j.jsams.2006.05.015 CrossRefPubMedGoogle Scholar
  99. 99.
    Krosshaug T, Nakamae A, Boden BP, Engebretsen L, Smith G, Slauterbeck JR, Hewett TE, Bahr R (2007b) Mechanisms of anterior cruciate ligament injury in basketball: video analysis of 39 cases. Am J Sports Med 35(3):359–367CrossRefPubMedGoogle Scholar
  100. 100.
    Sheehan FT, Sipprell WH 3rd, Boden BP (2012) Dynamic sagittal plane trunk control during anterior cruciate ligament injury. Am J Sports Med 40(5):1068–1074.  https://doi.org/10.1177/0363546512437850 CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Krosshaug T, Nakamae A, Boden B, Engebretsen L, Smith G, Slauterbeck J, Hewett TE, Bahr R (2007a) Estimating 3D joint kinematics from video sequences of running and cutting maneuvers—assessing the accuracy of simple visual inspection. Gait Posture 26(3):378–385.  https://doi.org/10.1016/j.gaitpost.2006.10.010 CrossRefPubMedGoogle Scholar
  102. 102.
    Noyes FR, Barber-Westin SD, Fleckenstein C, Walsh C, West J (2005) The drop-jump screening test: difference in lower limb control by gender and effect of neuromuscular training in female athletes. Am J Sports Med 33(2):197–207CrossRefPubMedGoogle Scholar
  103. 103.
    Beynnon BD, Vacek PM, Newell MK, Tourville TW, Smith HC, Shultz SJ, Slauterbeck JR, Johnson RJ (2014) The effects of level of competition, sport, and sex on the incidence of first-time noncontact anterior cruciate ligament injury. Am J Sports Med 42(8):1806–1812.  https://doi.org/10.1177/0363546514540862 CrossRefPubMedGoogle Scholar
  104. 104.
    Gomez E, DeLee JC, Farney WC (1996) Incidence of injury in Texas girls’ high school basketball. Am J Sports Med 24(5):684–687CrossRefPubMedGoogle Scholar
  105. 105.
    Gornitzky AL, Lott A, Yellin JL, Fabricant PD, Lawrence JT, Ganley TJ (2016) Sport-specific yearly risk and incidence of anterior cruciate ligament tears in high school athletes: a systematic review and meta-analysis. Am J Sports Med 44(10):2716–2723.  https://doi.org/10.1177/0363546515617742 CrossRefPubMedGoogle Scholar
  106. 106.
    Hewett TE, Lindenfeld TN, Riccobene JV, Noyes FR (1999) The effect of neuromuscular training on the incidence of knee injury in female athletes. A prospective study. Am J Sports Med 27(6):699–706CrossRefPubMedGoogle Scholar
  107. 107.
    Ingram JG, Fields SK, Yard EE, Comstock RD (2008) Epidemiology of knee injuries among boys and girls in US high school athletics. Am J Sports Med 36(6):1116–1122.  https://doi.org/10.1177/0363546508314400 CrossRefPubMedGoogle Scholar
  108. 108.
    Mandelbaum BR, Silvers HJ, Watanabe DS, Knarr JF, Thomas SD, Griffin LY, Kirkendall DT, Garrett W Jr (2005) Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am J Sports Med 33(7):1003–1010.  https://doi.org/10.1177/0363546504272261 CrossRefPubMedGoogle Scholar
  109. 109.
    Messina DF, Farney WC, DeLee JC (1999) The incidence of injury in Texas high school basketball. A prospective study among male and female athletes. Am J Sports Med 27(3):294–299CrossRefPubMedGoogle Scholar
  110. 110.
    Pfeiffer RP, Shea KG, Roberts D, Grandstrand S, Bond L (2006) Lack of effect of a knee ligament injury prevention program on the incidence of noncontact anterior cruciate ligament injury. J Bone Joint Surg Am 88(8):1769–1774CrossRefPubMedGoogle Scholar
  111. 111.
    Agel J, Arendt EA, Bershadsky B (2005) Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. Am J Sports Med 33(4):524–530CrossRefPubMedGoogle Scholar
  112. 112.
    Hootman JM, Dick R, Agel J (2007) Epidemiology of collegiate injuries for 15 sports: summary and recommendations for injury prevention initiatives. J Athl Train 42(2):311–319PubMedPubMedCentralGoogle Scholar
  113. 113.
    Mihata LC, Beutler AI, Boden BP (2006) Comparing the incidence of anterior cruciate ligament injury in collegiate lacrosse, soccer, and basketball players: implications for anterior cruciate ligament mechanism and prevention. Am J Sports Med 34(6):899–904.  https://doi.org/10.1177/0363546505285582 CrossRefPubMedGoogle Scholar
  114. 114.
    Evans KN, Kilcoyne KG, Dickens JF, Rue JP, Giuliani J, Gwinn D, Wilckens JH (2012) Predisposing risk factors for non-contact ACL injuries in military subjects. Knee Surg Sports Traumatol Arthrosc 20(8):1554–1559.  https://doi.org/10.1007/s00167-011-1755-y CrossRefPubMedGoogle Scholar
  115. 115.
    Gwinn DE, Wilckens JH, McDevitt ER, Ross G, Kao TC (2000) The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. Am J Sports Med 28(1):98–102CrossRefPubMedGoogle Scholar
  116. 116.
    Mountcastle SB, Posner M, Kragh JF Jr, Taylor DC (2007) Gender differences in anterior cruciate ligament injury vary with activity: epidemiology of anterior cruciate ligament injuries in a young, athletic population. Am J Sports Med 35(10):1635–1642.  https://doi.org/10.1177/0363546507302917 CrossRefPubMedGoogle Scholar
  117. 117.
    Peck KY, Johnston DA, Owens BD, Cameron KL (2013) The incidence of injury among male and female intercollegiate rugby players. Sports Health 5(4):327–333.  https://doi.org/10.1177/1941738113487165 CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Liederbach M, Dilgen FE, Rose DJ (2008) Incidence of anterior cruciate ligament injuries among elite ballet and modern dancers: a 5-year prospective study. Am J Sports Med 36(9):1779–1788.  https://doi.org/10.1177/0363546508323644 CrossRefPubMedGoogle Scholar
  119. 119.
    Myklebust G, Maehlum S, Engebretsen L, Strand T, Solheim E (1997) Registration of cruciate ligament injuries in Norwegian top level team handball. A prospective study covering two seasons. Scand J Med Sci Sports 7(5):289–292CrossRefPubMedGoogle Scholar
  120. 120.
    Prodromos CC, Han Y, Rogowski J, Joyce B, Shi K (2007) A meta-analysis of the incidence of anterior cruciate ligament tears as a function of gender, sport, and a knee injury-reduction regimen. Arthroscopy 23(12):1320–1325.e1326CrossRefPubMedGoogle Scholar
  121. 121.
    Petersen W, Braun C, Bock W, Schmidt K, Weimann A, Drescher W, Eiling E, Stange R, Fuchs T, Hedderich J, Zantop T (2005) A controlled prospective case control study of a prevention training program in female team handball players: the German experience. Arch Orthop Trauma Surg 125(9):614–621CrossRefPubMedGoogle Scholar
  122. 122.
    Soderman K, Werner S, Pietila T, Engstrom B, Alfredson H (2000) Balance board training: prevention of traumatic injuries of the lower extremities in female soccer players? A prospective randomized intervention study. Knee Surg Sports Traumatol Arthrosc 8(6):356–363CrossRefPubMedGoogle Scholar
  123. 123.
    Chaudhari AM, Lindenfeld TN, Andriacchi TP, Hewett TE, Riccobene J, Myer GD, Noyes FR (2007) Knee and hip loading patterns at different phases in the menstrual cycle: implications for the gender difference in anterior cruciate ligament injury rates. Am J Sports Med 35(5):793–800.  https://doi.org/10.1177/0363546506297537 CrossRefPubMedGoogle Scholar
  124. 124.
    Barber-Westin SD, Noyes FR (2017) Effect of fatigue protocols on lower limb neuromuscular function and implications for ACL injury prevention training: a systematic review. Am J Sports Med 45(14):3388–3396.  https://doi.org/10.1177/0363546517693846 CrossRefPubMedGoogle Scholar
  125. 125.
    John R, Dhillon MS, Sharma S, Prabhakar S, Bhandari M (2016) Is there a genetic predisposition to anterior cruciate ligament tear? A systematic review. Am J Sports Med 44(12):3262–3269.  https://doi.org/10.1177/0363546515624467 CrossRefPubMedGoogle Scholar
  126. 126.
    Fuller CW, Dick RW, Corlette J, Schmalz R (2007) Comparison of the incidence, nature and cause of injuries sustained on grass and new generation artificial turf by male and female football players. Part 1: match injuries. Br J Sports Med 41(Suppl 1):i20–i26.  https://doi.org/10.1136/bjsm.2007.037267 CrossRefPubMedPubMedCentralGoogle Scholar
  127. 127.
    Olsen OE, Myklebust G, Engebretsen L, Holme I, Bahr R (2003) Relationship between floor type and risk of ACL injury in team handball. Scand J Med Sci Sports 13(5):299–304CrossRefPubMedGoogle Scholar
  128. 128.
    Pasanen K, Parkkari J, Rossi L, Kannus P (2008) Artificial playing surface increases the injury risk in pivoting indoor sports: a prospective one-season follow-up study in Finnish female floorball. Br J Sports Med 42(3):194–197.  https://doi.org/10.1136/bjsm.2007.038596 CrossRefPubMedGoogle Scholar
  129. 129.
    Steffen K, Andersen TE, Bahr R (2007) Risk of injury on artificial turf and natural grass in young female football players. Br J Sports Med 41(Suppl 1):i33–i37.  https://doi.org/10.1136/bjsm.2007.036665 CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Elliot DL, Goldberg L, Kuehl KS (2010) Young women’s anterior cruciate ligament injuries: an expanded model and prevention paradigm. Sports Med 40(5):367–376.  https://doi.org/10.2165/11531340-000000000-00000 CrossRefPubMedGoogle Scholar
  131. 131.
    Grooms DR, Onate JA (2016) Neuroscience application to noncontact anterior cruciate ligament injury prevention. Sports Health 8(2):149–152.  https://doi.org/10.1177/1941738115619164 CrossRefPubMedGoogle Scholar
  132. 132.
    Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The long-term consequence of anterior cruciate ligament and meniscus injuries: osteoarthritis. Am J Sports Med 35(10):1756–1769CrossRefPubMedGoogle Scholar
  133. 133.
    Beynnon BD, Uh BS, Johnson RJ, Abate JA, Nichols CE, Fleming BC, Poole AR, Roos H (2005) Rehabilitation after anterior cruciate ligament reconstruction. A prospective, randomized, double-blind comparison of programs administered over 2 different time periods. Am J Sports Med 33(3):347–359CrossRefPubMedPubMedCentralGoogle Scholar
  134. 134.
    Harkey MS, Luc BA, Golightly YM, Thomas AC, Driban JB, Hackney AC, Pietrosimone B (2015) Osteoarthritis-related biomarkers following anterior cruciate ligament injury and reconstruction: a systematic review. Osteoarthr Cartil 23(1):1–12.  https://doi.org/10.1016/j.joca.2014.09.004 CrossRefPubMedGoogle Scholar
  135. 135.
    Barber-Westin SD, Noyes FR (2011) Objective criteria for return to athletics after anterior cruciate ligament reconstruction and subsequent reinjury rates: a systematic review. Phys Sportsmed 39(3):100–110.  https://doi.org/10.3810/psm.2011.09.1926 CrossRefPubMedGoogle Scholar
  136. 136.
    Morgan MD, Salmon LJ, Waller A, Roe JP, Pinczewski LA (2016) Fifteen-year survival of endoscopic anterior cruciate ligament reconstruction in patients aged 18 years and younger. Am J Sports Med 44(2):384–392.  https://doi.org/10.1177/0363546515623032 CrossRefPubMedGoogle Scholar
  137. 137.
    Thompson S, Salmon L, Waller A, Linklater J, Roe J, Pinczewski L (2015) Twenty-year outcomes of a longitudinal prospective evaluation of isolated endoscopic anterior cruciate ligament reconstruction with patellar tendon autografts. Am J Sports Med 43(9):2164–2174.  https://doi.org/10.1177/0363546515591263 CrossRefPubMedGoogle Scholar
  138. 138.
    Webster KE, Feller JA (2016) Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am J Sports Med 44(11):2827–2832.  https://doi.org/10.1177/0363546516651845 CrossRefPubMedGoogle Scholar
  139. 139.
    Wiggins AJ, Grandhi RK, Schneider DK, Stanfield D, Webster KE, Myer GD (2016) Risk of secondary injury in younger athletes after anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Am J Sports Med 44(7):1861–1876.  https://doi.org/10.1177/0363546515621554 CrossRefPubMedPubMedCentralGoogle Scholar
  140. 140.
    Hewett TE, Ford KR, Xu YY, Khoury J, Myer GD (2016) Utilization of ACL injury biomechanical and neuromuscular risk profile analysis to determine the effectiveness of neuromuscular training. Am J Sports Med 44(12):3146–3151.  https://doi.org/10.1177/0363546516656373 CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Pappas E, Shiyko MP, Ford KR, Myer GD, Hewett TE (2016) Biomechanical deficit profiles associated with ACL injury risk in female athletes. Med Sci Sports Exerc 48(1):107–113.  https://doi.org/10.1249/MSS.0000000000000750 CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Chandran A, Barron MJ, Westerman BJ, DiPietro L (2016) Time trends in incidence and severity of injury among collegiate soccer players in the United States: NCAA injury surveillance system, 1990–1996 and 2004–2009. Am J Sports Med 44(12):3237–3242.  https://doi.org/10.1177/0363546516659879 CrossRefPubMedGoogle Scholar
  143. 143.
    Labella CR, Huxford MR, Grissom J, Kim KY, Peng J, Christoffel KK (2011) Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools: cluster randomized controlled trial. Arch Pediatr Adolesc Med 165(11):1033–1040.  https://doi.org/10.1001/archpediatrics.2011.168 CrossRefPubMedGoogle Scholar
  144. 144.
    Noyes FR, Barber-Westin SD (2014) Neuromuscular retraining intervention programs: do they reduce noncontact anterior cruciate ligament injury rates in adolescent female athletes? Arthroscopy 30(2):245–255.  https://doi.org/10.1016/j.arthro.2013.10.009 CrossRefPubMedGoogle Scholar
  145. 145.
    Swart E, Redler L, Fabricant PD, Mandelbaum BR, Ahmad CS, Wang YC (2014) Prevention and screening programs for anterior cruciate ligament injuries in young athletes: a cost-effectiveness analysis. J Bone Joint Surg Am 96(9):705–711.  https://doi.org/10.2106/JBJS.M.00560 CrossRefPubMedPubMedCentralGoogle Scholar
  146. 146.
    Gagnier JJ, Morgenstern H, Chess L (2013) Interventions designed to prevent anterior cruciate ligament injuries in adolescents and adults: a systematic review and meta-analysis. Am J Sports Med 41(8):1952–1962.  https://doi.org/10.1177/0363546512458227 CrossRefPubMedGoogle Scholar
  147. 147.
    Grimm NL, Shea KG, Leaver RW, Aoki SK, Carey JL (2013) Efficacy and degree of bias in knee injury prevention studies: a systematic review of RCTs. Clin Orthop Relat Res 471(1):308–316.  https://doi.org/10.1007/s11999-012-2565-3 CrossRefPubMedGoogle Scholar
  148. 148.
    Noyes FR, Barber Westin SD (2012) Anterior cruciate ligament injury prevention training in female athletes: a systematic review of injury reduction and results of athletic performance tests. Sports Health 4(1):36–46.  https://doi.org/10.1177/1941738111430203 CrossRefPubMedPubMedCentralGoogle Scholar
  149. 149.
    Stevenson JH, Beattie CS, Schwartz JB, Busconi BD (2015) Assessing the effectiveness of neuromuscular training programs in reducing the incidence of anterior cruciate ligament injuries in female athletes: a systematic review. Am J Sports Med 43(2):482–490.  https://doi.org/10.1177/0363546514523388 CrossRefPubMedGoogle Scholar
  150. 150.
    Sugimoto D, Myer GD, Barber Foss KD, Pepin MJ, Micheli LJ, Hewett TE (2016) Critical components of neuromuscular training to reduce ACL injury risk in female athletes: meta-regression analysis. Br J Sports Med 50(20):1259–1266.  https://doi.org/10.1136/bjsports-2015-095596 CrossRefPubMedPubMedCentralGoogle Scholar
  151. 151.
    Yoo JH, Lim BO, Ha M, Lee SW, Oh SJ, Lee YS, Kim JG (2010) A meta-analysis of the effect of neuromuscular training on the prevention of the anterior cruciate ligament injury in female athletes. Knee Surg Sports Traumatol Arthrosc 18(6):824–830.  https://doi.org/10.1007/s00167-009-0901-2 CrossRefPubMedGoogle Scholar
  152. 152.
    Hootman JM, Helmick CG (2006) Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum 54(1):226–229.  https://doi.org/10.1002/art.21562 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Cincinnati Sportsmedicine and Orthopaedic CenterCincinnatiUSA
  2. 2.Cincinnati Sportsmedicine Research and Education FoundationCincinnatiUSA

Personalised recommendations