Preliminary Study Investigating Brain Shift Compensation using 3D CBCT Cerebral Vascular Images

  • Siming Bayer
  • Roman Schaffert
  • Nishant Ravikumar
  • Andreas Maier
  • Xiaodong Tong
  • Hu Wang
  • Martin Ostermeier
  • Rebecca Fahrig
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

During a neurosurgical procedure, the exposed brain undergoes an elastic deformation caused by numerous factors. This deformation, also known as brain shift, greatly affects the accuracy of neuronavigation systems. Non-rigid registration methods based on point matching algorithms are frequently used to compensate for intraoperative brain shift, especially when anatomical structures such as cerebral vascular tree are available. In this work, we introduce a pipeline to compensate for the volumetric brain deformation with Cone Beam CT (CBCT) image data. Point matching algorithms are combined with Spline-based transforms for this purpose. The initial result of different combination is evaluated with synthetical image data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Hill DLG, Maurer CR, Maciunas RJ, et al. Measurement of intraoperative brain surface deformation under a craniotomy. Neurosurgery. 1998;43(3):514–526.Google Scholar
  2. 2.
    Bayer S, Maier A, Ostermeier M, et al. Intraoperative imaging modalities and compensation for brain shift in tumor Resection Surgery. Int J Biomed Imaging. 2017;2017:18.Google Scholar
  3. 3.
    Chui H, Rangarajan A. A new point matching algorithm for non-rigid registration. Comput Vis Image Underst. 2003;89(2):114 – 141.Google Scholar
  4. 4.
    Myronenko A, Song X. Point set registration: coherent point drift. IEEE Trans Pattern Anal Mach Intell. 2010;32(12):2262–2275.Google Scholar
  5. 5.
    Bookstein FL. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell. 1989;11(6):567–585.Google Scholar
  6. 6.
    Rueckert D, Sonoda LI, Hayes C, et al. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999 Aug;18(8):712–721.Google Scholar
  7. 7.
    Bayer S, Maier A, Ostermeier M, et al. Generation of synthetic Image Data for the Evaluation of Brain Shift Compensation Methods. Proc IGIC. 2017.Google Scholar
  8. 8.
    Frangi AF, Niessen WJ, Vincken KL, et al. Multiscale vessel enhancement filtering. Proc MICCAI. 1998; p. 130–137.Google Scholar
  9. 9.
    Otsu N. A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern. 1979;9(1):62–66.Google Scholar
  10. 10.
    Lee TC, Kashyap RL, Chu CN. Building skeleton models via 3-D medial surface axis thinning algorithms. Comput Vis Graph Image Process. 1994;56(6):462 – 478.Google Scholar
  11. 11.
    Yuille AL, Grzywacz NM. A mathematical analysis of the motion coherence theory. Int J Comput Vis. 1989 Jun;3(2):155–175.Google Scholar
  12. 12.
    Christensen G, Geng X, G Kuhl J, et al.. Introduction to the non-rigid image registration evaluation project (NIREP); 2006.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Siming Bayer
    • 1
  • Roman Schaffert
    • 1
  • Nishant Ravikumar
    • 1
  • Andreas Maier
    • 1
  • Xiaodong Tong
    • 2
  • Hu Wang
    • 2
  • Martin Ostermeier
    • 3
  • Rebecca Fahrig
    • 3
  1. 1.Pattern Recognition LabFAU Erlangen-NurembergErlangenDeutschland
  2. 2.Tianjin Huanhu HospitalTianjinChina
  3. 3.Siemens Healthcare GmbHForchheimDeutschland

Personalised recommendations