Measuring Finger Lengths from 2D Palm Scans

  • Alexander TwrdikEmail author
  • Ulf-Dietrich Braumann
  • Franziska Abicht
  • Wieland Kiess
  • Toralf Kirsten
Conference paper
Part of the Informatik aktuell book series (INFORMAT)


A goal of Life Child is to study the development of children and adolescents. The growth of fingers and other palm compartments in this age group has been received little attraction so far. Usually, finger lengths are measured manually even when 2D palm images have been produced. This is often cumbersome for very large studies. In this paper, we introduce an approach to automatically segement palm and finger compartments of scanned 2D palm scans. The scans were taken by a single document scanner with the goal to measure finger lengths. Our algorithms are rotation invariant, automatically recognize hand objects in images using a skin color model, determine the finger segments for that the length from the fingertip to the crease is derived. We outline steps of the image processing pipeline and show first evaluation results


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Poulain T, Baber R, Vogel M, et al. The life child study: a population-based perinatal and pediatric cohort in germany. Eur J Epidemiol. 2017;32(2):145–158.Google Scholar
  2. 2.
    Trivers R, Manning J, Jacobson A. A longitudinal study of digit ratio and other finger ratios in Jamaican children. Hormon Behav. 2006;49(2):150–156.Google Scholar
  3. 3.
    Wallien MSC, Zucker KJ, Steensma TD, et al. 2D:4D finger-length ratios in children and adults with gender identity disorder. Hormon Behav. 2008;54(3):450–454.Google Scholar
  4. 4.
    Sanchez-Reillo R, Sanchez-Avila C, Gonzalez-Marcos A. Biometric identification through hand geometry measurements. IEEE Trans Pattern Anal Mach Intell. 2000;22(10):1168–1171.Google Scholar
  5. 5.
    Varchol P, Levicky D. Using of hand geometry in biometric security systems. Radioeng. 2007;16(4):82–87.Google Scholar
  6. 6.
    Hasan MM, Mishra PK. Real time fingers and palm locating using dynamic circle templates. Int J Comput Appl. 2012;41(6).Google Scholar
  7. 7.
    Prasertsakul P, Kondo T. A New Fingertip Detection Method Using the Top-Hat Transform. Thammasat Int J Sci Technol. 2015;20(3):19–27.Google Scholar
  8. 8.
    Cook T, Sutton R, Buckley K. Automated flexion crease identification using internal image seams. Pattern Recogn. 2010;43(3):630–635.Google Scholar
  9. 9.
    Bhuyan MK, MacDorman KF, Kar MK, et al. Hand pose recognition from monocular images by geometrical and texture analysis. J Vis Lang Comput. 2015;28:39–55.Google Scholar
  10. 10.
    Basilio J, Torres G, Pérez G, et al. Explicit image detection using ycbcr space color model as skin detection. Proc WSEAS ICCEA. 2011; p. 123–128.Google Scholar
  11. 11.
    Dhawan A, Honrao V. Implementation of hand detection based techniques for human computer interaction. arXiv preprint arXiv:13127560. 2013.
  12. 12.
    Avidan S, Shamir A. Seam Carving for Content-aware Image Resizing. ACM Trans Graph. 2007;26(3).Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Alexander Twrdik
    • 1
  • Ulf-Dietrich Braumann
    • 2
    • 3
  • Franziska Abicht
    • 1
  • Wieland Kiess
    • 1
    • 4
  • Toralf Kirsten
    • 1
  1. 1.LIFE Research Center for Civilization DiseasesUniversity of LeipzigLeipzigDeutschland
  2. 2.Faculty of Electrical Engineering and Information TechnologyHTWK LeipzigLeipzigDeutschland
  3. 3.Fraunhofer Institute for Cell Therapy and ImmunologyLeipzigDeutschland
  4. 4.Hospital for Children and AdolescenceUniversity of LeipzigLeipzigDeutschland

Personalised recommendations