Advertisement

Background Correction and Stitching of Histological Plaque Images

  • Lilli Kaufhold
  • Heike Goebel
  • Hanieh Mirzaee
  • Christoph Strecker
  • Andreas Harloff
  • Anja Hennemuth
Conference paper
Part of the Informatik aktuell book series (INFORMAT)

Zusammenfassung

Histological examination of atherosclerotic plaques is the gold standard for the analysis of vessel plaque composition. The digitalization of the microscopic histology images results in a set of image tiles with overlapping regions of the same histological 2D slice. To allow comparison with other imaging modalities the tiles must be stitched together to a complete image of the plaque. The purpose of this work is to develop custom processing methods for the intensity correction and stitching problems. The developed methods are applied to 19 plaque images from an ongoing study. Results are compared with manual as well as automatic photo stitching.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. 1.
    Sanz J, Fayad ZA. Imaging of atherosclerotic cardiovascular disease. Nature. 2008;451(7181):953–957.Google Scholar
  2. 2.
    Tomaževič D, Likar B, Pernuš F. Comparative evaluation of retrospective shading correction methods. J Microsc. 2002;208(3):212–223.Google Scholar
  3. 3.
    BrownM, Lowe DG. Automatic panoramic image stitching using invariant features. Int J Comput Vis. 2007;74(1):59–73.Google Scholar
  4. 4.
    Yang F, Deng ZS, Fan QH. A method for fast automated microscope image stitching. Micron. 2013;48:17–25.Google Scholar
  5. 5.
    Penzias G, Janowczyk A, Singanamalli A, et al. AutoStitcher: An automated program for efficient and robust reconstruction of digitized whole histological sections from tissue fragments. Sci Rep. 2016;6:29906.Google Scholar
  6. 6.
    Yu W. Practical anti-vignetting methods for digital cameras. IEEE Trans Consum Electronic. 2004;50(4):975–983.Google Scholar
  7. 7.
    Goldman DB, Chen JH; IEEE. Vignette and exposure calibration and compensation. Proc IEEE ICCV. 2005;1:899–906.Google Scholar
  8. 8.
    Babaloukas G, Tentolouris N, Liatis S, et al. Evaluation of three methods for retrospective correction of vignetting on medical microscopy images utilizing two open source software tools. J Microsc. 2011;244(3):320–324.Google Scholar
  9. 9.
    Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998;17(1):87–97.Google Scholar
  10. 10.
    Modersitzki J. Numerical methods for Image Registration. Oxford University Press on Demand; 2004.Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2018

Authors and Affiliations

  • Lilli Kaufhold
    • 1
  • Heike Goebel
    • 2
  • Hanieh Mirzaee
    • 1
  • Christoph Strecker
    • 3
  • Andreas Harloff
    • 3
  • Anja Hennemuth
    • 1
    • 4
  1. 1.Fraunhofer MEVISBremenDeutschland
  2. 2.Universitätsklinik KölnKölnDeutschland
  3. 3.Universitätsklinik FreiburgFreiburgDeutschland
  4. 4.Charité–Universitätsmedizin BerlinBerlinDeutschland

Personalised recommendations