Advertisement

The Physics of Surface Phonons

  • Giorgio BenedekEmail author
  • Jan Peter Toennies
Chapter
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 63)

Abstract

The effect of the surface termination on the phonon dispersion curves is illustrated by comparison with the bulk dispersion curves. After a review of Rayleigh’s theory of surface waves in elastic media the atomistic Born-von Karman theory for bulk phonons is presented. How the surface affects the surface vibrations is illustrated by the Green’s function theory and slab calculations. The chapter closes with some illustrations of surface phonon dispersion curves and their classification.

References

  1. 1.
    E. W. Plummer, W. Eberhardt, in: Advances in Chemical Physics, vol. XLIX, ed. by I. Prigogine, S. A. Rice (Wiley, New York, 1982) p. 1Google Scholar
  2. 2.
    H. Lüth, Surfaces and Interfaces of Solid Materials, 3rd edn. (Springer, Heidelberg, 1995)CrossRefGoogle Scholar
  3. 3.
    H. Lüth, Solid Surfaces, Interfaces and Thin Films (Springer, Heidelberg, 2001)CrossRefGoogle Scholar
  4. 4.
    G. Brusdeylins, R.B. Doak, J.P. Toennies, Phys. Rev. B 27, 3662 (1983)ADSCrossRefGoogle Scholar
  5. 5.
    W.J.L. Buyers, Phys. Rev. 153, 923 (1967)ADSCrossRefGoogle Scholar
  6. 6.
    P. Santini, L. Miglio, G. Benedek, U. Harten, P. Ruggerone, J.P. Toennies, Phys. Rev. B 42, 11942 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    J.L.T. Waugh, G. Dolling, Phys. Rev. 132, 2410 (1963)ADSCrossRefGoogle Scholar
  8. 8.
    R.B. Doak, U. Harten, J.P. Toennies, Phys. Rev. Lett. 51, 578 (1983)ADSCrossRefGoogle Scholar
  9. 9.
    W. Drexel, Z. Phys. 255, 281 (1977)ADSCrossRefGoogle Scholar
  10. 10.
    H.-J. Ernst, E. Hulpke, J.P. Toennies, Phys. Rev. Lett. 58, 1941 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    A. Larose, B.N. Brockhouse, Can. J. Phys. 54, 1819 (1976)ADSCrossRefGoogle Scholar
  12. 12.
    Y.R. Wang, C.B. Duke, Surf. Sci. 205, L755 (1988)ADSCrossRefGoogle Scholar
  13. 13.
    L. Miglio, P. Santini, P. Ruggerone, G. Benedek, Phys. Rev. Lett. 62, 3070 (1989)ADSCrossRefGoogle Scholar
  14. 14.
    K. Hermann, Crystallography and Surface Structure: An Introduction for Surface Scientists and Nanoscientists, 2nd edn. (Wiley, Berlin, 2016)CrossRefGoogle Scholar
  15. 15.
    M.W. Finnis, V. Heine, J. Phys. F (Metal Phys). 4, L37 (1974)ADSCrossRefGoogle Scholar
  16. 16.
    S. Lehwald, F. Wolf, H. Ibach, B.M. Hall, D.L. Mills, Surf. Sci. 192, 131 (1987)ADSCrossRefGoogle Scholar
  17. 17.
    W. Kohn, Phys. Rev. Lett. 2, 393 (1959)ADSCrossRefGoogle Scholar
  18. 18.
    J. Ernst, E. Hulpke, J.P. Toennies, Europhys. Lett. 10, 747 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    H.-J. Ernst, E. Hulpke, J.P. Toennies, Phys. Rev. B 46, 16081 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    J.W. Strutt (Baron Rayleigh), Proc. London Math. Soc. 17, 4 (1885)Google Scholar
  21. 21.
    J.W. Strutt (Baron Rayleigh), The Theory of Sound (MacMillan, London 1896; reprinted by Dover Publ., New York, 1945)Google Scholar
  22. 22.
    G.W. Farnell, in Physical Acoustics, vol. 6, ed. by W.P. Mason, R.N. Thurston (Academic Press, New York, 1970) p. 109Google Scholar
  23. 23.
    G.W. Farnell, in Acoustic Surface Waves, ed. by A.A. Oliner (Springer, Berlin, 1978) p. 13Google Scholar
  24. 24.
    A.A. Oliner (ed.), Acoustic Surface Waves (Springer V, Berlin, 1978)Google Scholar
  25. 25.
    B.H. Brandsen, C.J. Joachain, Introduction to Quantum Mechanics (Longman, New York, 1989)Google Scholar
  26. 26.
    G.P. Alldredge, Phys. Lett. 41A, 281 (1972)ADSCrossRefGoogle Scholar
  27. 27.
    M. Born, Th von Kármán, Phys. Zeit. 13, 297 (1912)Google Scholar
  28. 28.
    A.A. Maradudin, E.W. Montroll, G.H. Weiss and I.P. Ipatova, in Theory of Lattice Dynamics in the Harmonic Approximation, Solid State Physics, suppl. 3 (Academic Press, New York, 1971)Google Scholar
  29. 29.
    J. DeLaunay, Solid State Phys. 2, 219 (1956)Google Scholar
  30. 30.
    V. Bortolani, A. Franchini, G. Santoro, in Electronic Structure, Dynamics and Quantum Structural Properties of Condensed Matter, ed. by J.T. Devreese, P. van Camp (Plenum Press, New York, 1984) p. 401Google Scholar
  31. 31.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon Press, 1954 and 1998)Google Scholar
  32. 32.
    W. Cochran, The Dynamics of Atoms in Crystals (Arnold, London, 1973)Google Scholar
  33. 33.
    P. Brüesch, Phonons: Theory and Experiments. Lattice Dynamics and Models of Interatomic Forces (Springer, Berlin, 1982)Google Scholar
  34. 34.
    H. Böttger, Principle of the Theory of Lattice Dynamics (Akademie-Verlag, Berlin, 1983) Sec. 1.4Google Scholar
  35. 35.
    A. Askar, Lattice Dynamical Foundations of Continuum Theories (World Sci., Singapore, 1986)Google Scholar
  36. 36.
    M. T. Dove, Introduction to Lattice Dynamics (Cambridge Univ. Press, 1993)Google Scholar
  37. 37.
    P.N. Keating, Phys. Rev. 140A, 369 (1965)ADSCrossRefGoogle Scholar
  38. 38.
    P.N. Keating, Phys. Rev. 145, 637 (1966)ADSCrossRefGoogle Scholar
  39. 39.
    V. Bortolani, A. Franchini, F. Nizzoli, A. Franchini, J. Electr. Spectr. Rel. Phenom. 29, 219 (1983)CrossRefGoogle Scholar
  40. 40.
    For a compilation of bulk phonon data see H.R. Schober, P.H. Dedrich in Landolt-Börnstein, Neue Serie Bd. 13a (Springer, Berlin, 1981)Google Scholar
  41. 41.
    R.F. Wallis in Dynamical Properties of Solids, vol. 2, ed. by G.K. Horton, A.A. Maradudin (North-Holland, Amsterdam, 1975) p. 443Google Scholar
  42. 42.
    J.E. Black, in Dynamical Properties of Solids, vol. 6, ed. by G.K. Horton and A.A. Maradudin (Elsevier, Amsterdam, 1990) p. 179Google Scholar
  43. 43.
    R.E. Allen, G.P. Alldredge, F.W. de Wette, Phys. Rev. Lett. 23, 1285 (1969)ADSCrossRefGoogle Scholar
  44. 44.
    R.E. Allen, G.P. Alldredge, F.W. de Wette, Phys. Rev. B 4, 1648, 1661(1971)ADSCrossRefGoogle Scholar
  45. 45.
    L. Miglio, G. Benedek, in Structure and Dynamics of Surfaces II, ed. by W. Schommers, P. von Blanckenhagen (Springer, Heidelberg, 1987) p. 35Google Scholar
  46. 46.
    G. Benedek, L. Miglio, in Surface Phonons, vol. 27, ed. by F.W. de Wette, W. Kress, Springer Ser. Surf. Sci., (Springer, Berlin, 1991) p. 37Google Scholar
  47. 47.
    G. Benedek, Phys. Status Sol. B58, 661 (1973)ADSCrossRefGoogle Scholar
  48. 48.
    A.A. Maradudin, P. Mazur, E.W. Montroll, G.H. Weiss, Rev. Mod. Phys. 30, 173 (1958), App. AADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    S. Doniach, E.H. Sondheimer, in Green’s Funtion for Solid State Physics (Benjamin, London, 1974; reprinted by Imperial College Press, London, 1998)Google Scholar
  50. 50.
    E.N. Economou, Green’s Function in Quantum Physics (Springer, Berlin, 1978)Google Scholar
  51. 51.
    I.M. Lifshitz and L.M. Rozenzweig, Zh. Eksp. Teor. Fiz. 18 (1948) 1012 (in Russian); I.M. Lifshitz: Nuovo Cimento, suppl. 3 (1956) p. 732Google Scholar
  52. 52.
    I.M. Lifshitz, A.M. Kosevich, Rep. Progr. Phys. 29(I), 217 (1966)ADSCrossRefGoogle Scholar
  53. 53.
    B.A. Lippmann, J. Schwinger, Phys. Rev. 79, 469 (1950)ADSCrossRefGoogle Scholar
  54. 54.
    L. van Hove, Phys. Rev. 95, 249 (1954)ADSCrossRefGoogle Scholar
  55. 55.
    G. Benedek, Surf. Sci. 61, 603 (1976)ADSCrossRefGoogle Scholar
  56. 56.
    F.W. de Wette, W. Kress (eds.), Surface Phonons, Springer Ser. Surf. Sci., vol. 21 (Springer, Berlin, 1991) p. 67Google Scholar
  57. 57.
    F.W. de Wette, G.P. Alldredge, in Methods in Computational Physics, vol. 15, ed. by G. Gilat, B. Alder, S. Fernbach, M. Rotenberg (Academic, New York, 1976) p. 163Google Scholar
  58. 58.
    F.W. de Wette, in Dynamical Properties of Solids, ed. by G.K. Horton, A.A. Maradudin (Elsevier, Amsterdam, 1990) Chap. 5Google Scholar
  59. 59.
    A. Lock, J.P. Toennies, G. Witte, J. Electr. Spectr. Rel. Phenom. 54(55), 309 (1990)CrossRefGoogle Scholar
  60. 60.
    Ch. Wöll, Thesis (University of Göttingen, 1987); Max-Planck-Institut für Strömungsforschung, Report 18/1987Google Scholar
  61. 61.
    The calculation of a one-layer two-dimensional lattice is described in O. Madelung, Festkörpertheorie II (Springer, Berlin, 1972)Google Scholar
  62. 62.
    O. Madelung, Festkörpertheorie I (Springer, Berlin, 1972) p. 127ffGoogle Scholar
  63. 63.
    Ch. Wöll, Appl. Phys. A 53, 377 (1991)ADSCrossRefGoogle Scholar
  64. 64.
    G. Benedek, J. Ellis, A. Reichmuth, P. Ruggerone, H. Schief, J.P. Toennies, Phys. Rev. Lett. 69, 2951 (1992)ADSCrossRefGoogle Scholar
  65. 65.
    R.F. Wallis, Phys. Rev. 105 (1957) 540; 116 (1959) 302ADSCrossRefGoogle Scholar
  66. 66.
    A.A. Lucas, J. Chem. Phys. 48, 3156 (1968)ADSCrossRefGoogle Scholar
  67. 67.
    R. Fuchs, K.L. Kliever, Phys. Rev. 140, A2076 (1965)ADSCrossRefGoogle Scholar
  68. 68.
    K.L. Kliever, R. Fuchs, Phys. Rev. 144, 495 (1966); 150, 573 (1966)Google Scholar
  69. 69.
    A discussion of non-retarded FK modes vs. microscopic optical modes is given by W.E. Jones, R. Fuchs, Phys. Rev. B4, 3581 (1971). The surface dynamics theory including retardation has been developed first by V.V. Bryksin, Y.A. Firsov, Fiz. Tverd. Tela 11, 2167 (1969) [Sov. Phys. Solid State 11, 1751 (1970)]Google Scholar
  70. 70.
    H. Raether, Surface Plasmons (Springer, Berlin, 1988)Google Scholar
  71. 71.
    A.D. Boardman (ed.), Electromagnetic Surface Modes (Wiley, New York, 1982)Google Scholar
  72. 72.
    J. Pedlosky, Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics (Springer, Berlin, 2003)CrossRefGoogle Scholar
  73. 73.
    F.W. de Wette, in Surface Phonons, ed. by F.W. de Wette, W. Kress, Springer Series on Surf. Sci. Vol. 27 (Springer, Berlin, 1991) p. 67Google Scholar
  74. 74.
    G. Benedek, G.P. Brivio, L. Miglio, V.R. Velasco, Phys. Rev. B 26, 497 (1982)ADSCrossRefGoogle Scholar
  75. 75.
    G. Brusdeylins, R. Rechsteiner, J.G. Skofronick, J.P. Toennies, G. Benedek, L. Miglio, Phys. Rev. Lett. 54, 466 (1985)ADSCrossRefGoogle Scholar
  76. 76.
    G. Benedek, L. Miglio, in Ab-Initio Calculation of Phonon Spectra, ed. by J.T. Devreese, V.E. van Doren, P.E. Van Camp (Plenum, New York, 1983)Google Scholar
  77. 77.
    G. Benedek, L. Miglio, G. Brusdeylins, J.G. Skofronick, J.P. Toennies, Phys. Rev. B. 35, 6593 (1987)ADSCrossRefGoogle Scholar
  78. 78.
    T.S. Chen, F.W. de Wette, G.P. Alldredge, Phys. Rev. B 15, 1167 (1977)ADSCrossRefGoogle Scholar
  79. 79.
    R.F. Wallis, Phys. Rev. 105, 540 (1957); 116, 302 (1959)ADSCrossRefGoogle Scholar
  80. 80.
    G. Benedek, Physicalia Magazine. 18, 205 (1996)Google Scholar
  81. 81.
    G. Armand, Phys. Rev. B 14, 2218 (1976)ADSCrossRefGoogle Scholar
  82. 82.
    G. Benedek, G. Brusdeylins, V. Senz, J.G. Skofronick, J.P. Toennies, F. Traeger, R. Vollmer, Phys. Rev. B 64, 125421 (2001)ADSCrossRefGoogle Scholar
  83. 83.
    W. Kress, F.W. de Wette, A.D. Kulkarni, U. Schröder, Phys. Rev. B 35, 5783 (1987)ADSCrossRefGoogle Scholar
  84. 84.
    F.W. de Wette, A.D. Kulkarni, U. Schröder, W. Kress, Phys. Rev. B 35, 2467 (1987)ADSCrossRefGoogle Scholar
  85. 85.
    G. Benedek, L. Miglio, G. Brusdeylins, C. Heimlich, J.G. Skofronick, J.P. Toennies, Europhys. Lett. 5, 253 (1988)ADSCrossRefGoogle Scholar
  86. 86.
    G. Brusdeylins, R. Rechsteiner, J.G. Skofronick, J.P. Toennies, G. Benedek, L. Miglio, Phys. Rev. B 34, 902 (1986)ADSCrossRefGoogle Scholar
  87. 87.
    V. Panella, A. L. Glebov, J.P. Toennies, C. Sebenne, C. Eckl, C. Adler, P. Pavone, U. Schöder, Phys. Rev B59, 15772 (1999)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Università di Milano-BicoccaMilanItaly
  2. 2.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
  3. 3.Donostia International Physics CenterDonostia/San SebastianSpain

Personalised recommendations