Nanostructured Electrodes for High-Performing Solid Oxide Fuel Cells

Chapter

Abstract

Solid oxide fuel cell (SOFC) is an all-solid-state ceramic electrochemical device for converting chemical energy (fuels) to electricity with high energy efficiency and ultralow harmful emissions. These classes of FCs have received significant attention by researchers as a potential replacement for petroleum-based energy devices. In order to broaden the material selection and increase material system durability, the development of intermediate- or low-temperature SOFC is critical to making their commercialization viable. Therefore, the SOFC performance at lowered operating temperatures must be improved by the innovation of materials and microstructures. The nanostructure engineering of electrodes has demonstrated their improved catalytic performance due to minimization of the electrode polarization resistances for oxygen reduction reaction and fuel oxidation reaction at the nanoscale compared to the traditional electrode design. The synthesis technique strategy was based on wet chemistry catalyst infiltration into electrode structure and has been demonstrated improvements in power density and electrode stability. In this chapter, the technical process of ion infiltration method is discussed; and the different routes in fabricating nanostructured electrodes to achieve high-performing SOFC in hydrogen and hydrocarbon fuels are reviewed. The electrode parameters that lead to improvement of SOFC performance are also summarized. By fabricating electrodes at the nanoscale, a significant increase in specific area was obtained that can provide greater active catalysis sites for electrode reactions, as well as a decrease in the activation polarization resistance which collectively led to improved SOFC performance.

References

  1. 1.
    N.Q. Minh, Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563–588 (1993)CrossRefGoogle Scholar
  2. 2.
    A.J. Jacobson, Materials for solid oxide fuel cells. Chem. Mater. 22, 660–674 (2010)CrossRefGoogle Scholar
  3. 3.
    D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)CrossRefGoogle Scholar
  4. 4.
    R.M. Ormerod, Solid oxide fuel cells. Chem. Soc. Rev. 32, 17–28 (2003)CrossRefGoogle Scholar
  5. 5.
    Y. Yi, A.D. Rao, J. Brouwer, G.S. Samuelsen, J. Power Sources 144, 67–76 (2005)CrossRefGoogle Scholar
  6. 6.
    S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications. Solid State Ionics 152-153, 405–410 (2002)CrossRefGoogle Scholar
  7. 7.
    W.G. Coors, Protonic ceramic fuel cells for high-efficiency operation with methane. J. Power Sources 118, 150–156 (2003)CrossRefGoogle Scholar
  8. 8.
    L. Yang, C.D. Zuo, S.Z. Wang, Z. Cheng, M. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv. Mater. 20, 3280–3283 (2008)CrossRefGoogle Scholar
  9. 9.
    N.M. Sammes, Y. Du, R. Bove, Design and fabrication of a 100 W anode-supported tubular SOFC stack. J. Power Sources 145, 428–434 (2005)CrossRefGoogle Scholar
  10. 10.
    T. Fukui, S. Ohara, K. Mukai, Long-term stability of Ni-YSZ anode with a new microstructure prepared from composite powder. Electrochem. Solid-State Lett. 29(1), 120–122 (1998)Google Scholar
  11. 11.
    A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells. Nat. Mater. 3, 17–27 (2004)CrossRefGoogle Scholar
  12. 12.
    T. Zhang, W.G. Fahrenholtz, S.T. Reis, R.K. Brow, Borate volatility from SOFC sealing glasses. J. Am. Ceram. Soc. 91, 2564–2569 (2008)CrossRefGoogle Scholar
  13. 13.
    E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode. Nature 400, 649–651 (1999)CrossRefGoogle Scholar
  14. 14.
    S. McIntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells. Chem. Rev. 104, 4845–4865 (2004)CrossRefGoogle Scholar
  15. 15.
    Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid oxide fuel cells. Science 312, 254–257 (2006)CrossRefGoogle Scholar
  16. 16.
    R. Steinberger-Wilckens, F. Tietz, M.J. Smith, J. Mougin, B. Rietveld, O. Bucheli, J.V. Herle, R. Rosenberg, M. Zahid, P. Holtappels, Real-SOFC–a joint European effort in understanding SOFC degradation. ECS Trans. 7, 67–76 (2007)CrossRefGoogle Scholar
  17. 17.
    A. Hagen, R. Barfod, P.V. Hendriksen, Y.-L. Liu, S. Ramousse, Degradation of anode-supported SOFCs as a function of temperature and current load. J. Electrochem. Soc. 153, A1165–A1171 (2006)CrossRefGoogle Scholar
  18. 18.
    M.L. Liu, M.E. Lynch, K. Blinn, F.M. Alamgir, Y.M. Choi, Rational SOFC material design: new advances and tools. Mater. Today 14, 534–546 (2011)CrossRefGoogle Scholar
  19. 19.
    J.-H. Lee, J.-W. Heo, D.-S. Lee, J. Kim, G.-H. Kim, H.-W. Lee, H.S. Song, J.-H. Moon, The impact of anode microstructure on the power generating characteristics of SOFC. Solid State Ionics 158, 225–232 (2003)CrossRefGoogle Scholar
  20. 20.
    K.J. Yoon, P. Zink, S. Gopalan, U.B. Pal, Polarization measurements on single-step co-fired solid oxide fuel cells (SOFCs). J. Power Sources 172, 39–49 (2007)CrossRefGoogle Scholar
  21. 21.
    A.V. Virkar, J. Chen, C.W. Tanner, J.-W. Kim, The role of electrode microstructure on activation and concentration polarizations in solid oxide fuel cells. Solid State Ionics 131, 189–198 (2000)CrossRefGoogle Scholar
  22. 22.
    S.H. Chan, K.A. Khor, Z.T. Xia, A complete polarization model of a solid oxide fuel cell and its sensitivity to the change of cell component thickness. J. Power Sources 93, 130–140 (2001)CrossRefGoogle Scholar
  23. 23.
    D.A. Noren, M.A. Hoffman, Clarifying the Butler-Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models. J. Power Sources 152, 175–181 (2005)CrossRefGoogle Scholar
  24. 24.
    Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004)CrossRefGoogle Scholar
  25. 25.
    S.B. Adler, Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4843 (2004)CrossRefGoogle Scholar
  26. 26.
    C.W. Sun, R. Hui, J. Roller, Cathode materials for solid oxide fuel cells: a review. J. Solid State Electrochem. 14, 1125–1144 (2010)CrossRefGoogle Scholar
  27. 27.
    S.J. Skinner, Recent advances in perovskite-type materials for solid oxide fuel cell cathodes. Int. J. Inorg. Mater. 3, 113–121 (2001)CrossRefGoogle Scholar
  28. 28.
    A. Tarancόn, S.J. Skinner, R.J. Chater, F. Hernández-Ramírez, J.A. Kilner, Layered perovskites as promising cathodes for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 17, 3175–3181 (2007)CrossRefGoogle Scholar
  29. 29.
    L. Shao, Q. Wang, L. Fan, P. Wang, N. Zhang, K. Sun, Copper-cobalt spinel as a high-performance cathode for intermediate temperature solid oxide fuel cells. Chem. Commun. 52, 8615–8618 (2016)CrossRefGoogle Scholar
  30. 30.
    Q. Fu, F. Tietz, D. Sebold, S. Tao, J.T.S. Irvine, An efficient ceramic-based anode for solid oxide fuel cells. J. Power Sources 171, 663–669 (2007)CrossRefGoogle Scholar
  31. 31.
    G. Xiao, F. Chen, Redox stable anodes for solid oxide fuel cells. Front. Energy Res. 2, 1–13 (2014)Google Scholar
  32. 32.
    K. Huang, J. Wan, J.B. Goodenough, Oxide-ion conducting ceramics for solid oxide fuel. Cell 36, 1093–1098 (2001)Google Scholar
  33. 33.
    J.B. Goodenough, Y.-H. Huang, Alternative anode materials for solid oxide fuel cells. J. Power Sources 173, 1–10 (2007)CrossRefGoogle Scholar
  34. 34.
    P.G. Bruce, B. Scrosati, J.-M. Tarascon, Nanomaterials for rechargeable lithium batteries. Angew. Chem. 47, 2930–2946 (2008)CrossRefGoogle Scholar
  35. 35.
    L. Zhang, T.J. Webster, Nanotechnology and nanomaterials: promises for improved tissue regeneration. Nano Today 4, 66–80 (2009)CrossRefGoogle Scholar
  36. 36.
    Q. Peng, Y.-C. Tseng, S.B. Darling, J.W. Elam, A route to nanoscopic materials via sequential infiltration synthesis on block copolymer templates. ACS Nano 5, 4600–4606 (2011)CrossRefGoogle Scholar
  37. 37.
    J. Martin, C. Mijangos, Tailored polymer-based nanofibers and nanotubes by means of different infiltration methods into alumina nanopores. Langmuir 25, 1181–1187 (2009)CrossRefGoogle Scholar
  38. 38.
    T.Z. Sholklapper, H. Kurokawa, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, Nanostructured solid oxide fuel cell electrodes. Nano Lett. 7, 2136–2141 (2007)CrossRefGoogle Scholar
  39. 39.
    C.C. Chao, C.M. Hsu, Y. Cui, F.B. Prinz, Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 5, 5692–5696 (2011)CrossRefGoogle Scholar
  40. 40.
    L. Baque, A. Caneiro, M.S. Moreno, A. Serquis, High-performance nanostructured IT-SOFC cathodes prepared by the novel chemical method. Electrochem. Commun. 10, 1905–1908 (2008)CrossRefGoogle Scholar
  41. 41.
    D. Ding, X. Li, S.Y. Lai, K. Gerdes, M. Liu, Enhancing SOFC cathode performance by surface modification through infiltration. Energy Environ. Sci. 7, 552–575 (2014)CrossRefGoogle Scholar
  42. 42.
    J.M. Vohs, R.J. Gorte, High-performance SOFC cathodes prepared by infiltration. Adv. Mater. 21, 943–956 (2009)CrossRefGoogle Scholar
  43. 43.
    S.P. Jiang, A review of wet impregnation – an alternative method for the fabrication of high performance and nanostructured electrodes of solid oxide fuel cells. Mater. Sci. Eng. 418, 199–210 (2006)CrossRefGoogle Scholar
  44. 44.
    S.P. Jiang, Nanoscale and nanostructured electrodes of solid oxide fuel cells by infiltration: advances and challenges. Int. J. Hydro. Energy 37, 449–470 (2012)CrossRefGoogle Scholar
  45. 45.
    M.J. Jorgensen, M. Mogensen, Impedance of solid oxide fuel cell LSM/YSZ composite cathodes. J. Electrochem. Soc. 148, A433–A442 (2001)CrossRefGoogle Scholar
  46. 46.
    M. Shiono, K. Kobayashi, T.L. Nguyen, K. Hosoda, T. Kato, K. Ota, M. Dokiya, Effect of the CeO2 interlayer on ZrO2 electrolyte/la(Sr)CoO3 cathode for low-temperature SOFCs. Solid State Ionics 170, 1–7 (2004)CrossRefGoogle Scholar
  47. 47.
    L. Yang, C.D. Zuo, S.Z. Wang, Z. Cheng, M.L. Liu, A novel composite cathode for low-temperature SOFCs based on oxide proton conductors. Adv. Mater. 20, 3280–3283 (2008)CrossRefGoogle Scholar
  48. 48.
    Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells. Nature 431, 170–173 (2004)CrossRefGoogle Scholar
  49. 49.
    H. He, Y. Huang, J. Regal, M. Boaro, J.M. Vohs, R.J. Gorte, Low-temperature fabrication of oxide composites for solid-oxides fuel cells. J. Am. Ceram. Soc. 87, 331–336 (2004)CrossRefGoogle Scholar
  50. 50.
    Y. Huang, J.M. Vohs, R.J. Gorte, Characterization of LSM-YSZ composites prepared by impregnation methods. J. Electrochem. Soc. 152, A1347–A1353 (2005)CrossRefGoogle Scholar
  51. 51.
    T.J. Armstrong, A.V. Virkar, 204th Meeting of the Electrochemical Society (Electrochemical Society, Pennington, 2003). Abstract 1113Google Scholar
  52. 52.
    Z. Jiang, Z. Lei, B. Ding, C. Xia, F. Zhao, F. Chen, Electrochemical characteristics of solid oxide fuel cell cathodes prepared by infiltrating (la,Sr)MnO3 nanoparticles into yttria-stabilized bismuth oxide backbones. Int. J. Hydrog. Energy 35, 8322–8330 (2010)CrossRefGoogle Scholar
  53. 53.
    T.Z. Sholklapper, C. Lu, C.P. Jacobson, S.J. Visco, L.C. De Jonghe, LSM-infiltrated solid oxide fuel cell cathodes. Electrochem. Solid-State Lett. 9, A376–A378 (2006)CrossRefGoogle Scholar
  54. 54.
    T.Z. Sholklapper, V. Radmilovic, C.P. Jacobson, S.J. Visco, L.C.D. Jonghe, Electrochem. Solid-State Lett. 10, B74–B76 (2007)CrossRefGoogle Scholar
  55. 55.
    M.G. Bellino, J.G. Scannell, D.G. Lamas, A.G. Leyva, N.E. Walsöe de Reca, High-performance solid-oxide fuel cell cathodes based on cobaltite nanotubes. J. Am. Chem. Soc. 129, 3066–3067 (2007)CrossRefGoogle Scholar
  56. 56.
    Y. Gong, D. Palacio, X. Song, R.L. Patel, X. Liang, X. Zhao, J.B. Goodenough, K. Huang, Stabilizing nanostructured solid oxide fuel cell cathode with atomic layer deposition. Nano Lett. 13, 4340–4345 (2013)CrossRefGoogle Scholar
  57. 57.
    Y.L. Liu, A. Hagen, R. Barfod, M. Chen, H.J. Wang, F.W. Poulsen, P.V. Hendriksen, Microstructural studies on the degradation of the interface between LM-YSZ cathode and YSZ electrolyte in SOFCs. Solid State Ionics 180, 1298–1304 (2009)CrossRefGoogle Scholar
  58. 58.
    T.J. Armstrong, J.G. Rich, Anode-supported solid oxide fuel cells with La0.6Sr0.4CoO3-δ-Zr0.84Y0.16O2-δ composite cathodes fabricated by an infiltration method. J. Electrochem. Soc. 153, A515–A520 (2006)CrossRefGoogle Scholar
  59. 59.
    B. Liu, X. Chen, Y. Dong, S.S. Mao, M. Cheng, A high-performance, a nanostructured Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for solid oxide fuel cells. Adv. Energy Mater. 1, 343–346 (2011)CrossRefGoogle Scholar
  60. 60.
    D. Han, X. Liu, F. Zeng, J. Qian, T. Wu, Z. Zhan, A micro-nano porous oxide hybrid for efficient oxygen reduction in reduced-temperature solid oxide fuel cells. Sci. Rep. 2, 462 (2012)CrossRefGoogle Scholar
  61. 61.
    N. Ai, S.P. Jiang, Z. Lü, K. Chen, W. Su, Nanostructured (Ba,Sr)(Co,Fe) O3-δ impregnated (La,Sr) MnO3 cathode for intermediate-temperature solid oxide fuel cells. J. Electrochem. Soc. 157, B1033–B1039 (2010)CrossRefGoogle Scholar
  62. 62.
    R. Su, Z. Lü, S.P. Jiang, Y.B. Shen, W.H. Su, K.F. Chen, Ag decorated (Ba,Sr)(Co,Fe)O3 cathodes for solid oxide fuel cells prepared by electroless silver deposition. Int. J. Hydrog. Energy 38, 2413–2420 (2013)CrossRefGoogle Scholar
  63. 63.
    C. Xia, M. Liu, A simple and cost-effective approach to fabrication of dense ceramic membranes on porous substrates. J. Am. Ceram. Soc. 84, 1903–1905 (2001)CrossRefGoogle Scholar
  64. 64.
    C. Xia, F. Chen, M. Liu, Reduced-temperature solid oxide fuel cells fabricated by screen printing. Electrochem. Solid-State Lett. 4, A52–A54 (2001)CrossRefGoogle Scholar
  65. 65.
    H.Y. Tu, Y. Takeda, N. Imanishi, O. Yamamoto, Ln1-xSrxCoO3 (Ln=Sm, Dy) for the electrode of solid oxide fuel cells. Solid State Ionics 100, 283–288 (1997)CrossRefGoogle Scholar
  66. 66.
    Y. Liu, S. Zha, M. Liu, Novel nanostructured electrodes for solid oxide fuel cells fabricated by combustion chemical vapor deposition (CVD). Adv. Mater. 16, 256–260 (2004)CrossRefGoogle Scholar
  67. 67.
    F. Zhao, Z. Wang, M. Liu, L. Zhang, C. Xia, F. Chen, Novel nano-network cathodes for solid oxide fuel cells. J. Power Sources 185, 13–18 (2008)CrossRefGoogle Scholar
  68. 68.
    T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Impact of anode microstructure on solid oxide fuel cells. Science 325, 852–855 (2009)CrossRefGoogle Scholar
  69. 69.
    Z. Zhan, S.A. Barnett, A reduced temperature solid oxide fuel cell with nanostructured anodes. Energy Environ. Sic. 4, 3951–3954 (2011)CrossRefGoogle Scholar
  70. 70.
    J.H. Park, S.M. Han, K.J. Yoon, H. Kim, J. Hong, B.-K. Kim, J.-H. Lee, J.-W. Son, Impact of nanostructured anode on low-temperature performance of thin-film-based anode-supported solid oxide fuel cells. J. Power Sources 315, 324–330 (2016)CrossRefGoogle Scholar
  71. 71.
    T. Yamaguchi, H. Sumi, K. Hamamoto, T. Suzuki, Y. Fujishiro, J.D. Carter, S.A. Barnett, Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature. Int. J. Hydrog. Energy 39, 19731–19736 (2014)CrossRefGoogle Scholar
  72. 72.
    S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404, 265–267 (2000)CrossRefGoogle Scholar
  73. 73.
    R.J. Gorte, S. Park, J.M. Vohs, C. Wang, Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell. Adv. Mater. 12, 1465–1469 (2000)CrossRefGoogle Scholar
  74. 74.
    M.D. Gross, J.M. Vohs, R.J. Gorte, Recent progress in SOFC anodes for direct utilization of hydrocarbons. J. Mater. Chem. 17, 3071–3077 (2007)CrossRefGoogle Scholar
  75. 75.
    X.-F. Ye, B. Huang, S.R. Wang, Z.R. Wang, L. Xiong, T.L. Wen, Preparation and performance of a Cu–CeO2–ScSZ composite anode for SOFCs running on ethanol fuel. J. Power Sources 164, 203–209 (2007)CrossRefGoogle Scholar
  76. 76.
    R.J. Gorte, J.M. Vohs, Nanostructured anodes for solid oxide fuel cells. Curr. Opin. Colloid Interface Sci. 14, 236–244 (2009)CrossRefGoogle Scholar
  77. 77.
    S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid oxide fuel cells. Nat. Mater. 2, 320–323 (2003)CrossRefGoogle Scholar
  78. 78.
    X.W. Zhou, N. Yan, K.T. Chuang, J.L. Luo, Progress in La-doped SrTiO3 (LST)-based anode materials for solid oxide fuel cells. RSC Adv. 4, 118–131 (2014)CrossRefGoogle Scholar
  79. 79.
    Y.H. Huang, R.I. Dass, Z.L. Xing, J. Goodenough, Double perovskites as anode materials for solid oxide fuel cells. Science 312, 254–257 (2006)CrossRefGoogle Scholar
  80. 80.
    Q. Liu, X.H. Dong, G.L. Xiao, F. Zhao, F.L. Chen, A novel electrode material for symmetric SOFCs. Adv. Mater. 22, 5478–5482 (2010)CrossRefGoogle Scholar
  81. 81.
    C.H. Yang, Sulfur-tolerant redox-reversible anode material for direct hydrocarbon solid oxide fuel cells. Adv. Mater. 24, 1439–1443 (2012)CrossRefGoogle Scholar
  82. 82.
    J.S. Kim, V.V. Nair, J.M. Vohs, R.J. Gorte, A study of the methane tolerance of LSCM-YSZ composite anodes with Pt, Ni, Pd and ceria catalysts. Scr. Mater. 65, 90–95 (2011)CrossRefGoogle Scholar
  83. 83.
    K.B. Yoo, G.M. Choi, LST-GDC composite anode on LaGaO3-based solid oxide fuel cell. Solid State Ionics 192, 515–518 (2011)CrossRefGoogle Scholar
  84. 84.
    Y.H. Huang, Double-perovskite anode materials Sr2MMoO6 (M = Co, Ni) for solid oxide fuel cells. Chem. Mater. 21, 2319–2326 (2009)CrossRefGoogle Scholar
  85. 85.
    S.P. Jiang, Y. Ye, T. He, S.B. Ho, Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells. J. Power Sources 185, 179–182 (2008)CrossRefGoogle Scholar
  86. 86.
    Y. Ye, T. He, Y. Li, E.H. Tang, T.L. Reitz, S.P. Jiang, Pd-promoted La0.75Sr0.25Cr0.5Mn0.5O3/YSZ composite anodes for direct utilization of methane in SOFCs. J. Electrochem. Soc. 155, B811–B818 (2008)CrossRefGoogle Scholar
  87. 87.
    H. Kurokawa, J. Yang, C. Jacobson, L. DE Jongle, S. Visco, Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells. J. Power Sources 164, 510–518 (2007)CrossRefGoogle Scholar
  88. 88.
    S. Primdahl, Y.L. Liu, Ni catalyst for hydrogen conversion in Gadolinia-doped ceria anodes for solid oxide fuel cells. J. Electrochem. Soc. 149, A1466–A1472 (2002)CrossRefGoogle Scholar
  89. 89.
    H. Uchida, S. Suzuki, M. Watanabe, High performance electrode for medium-temperature solid oxide fuel cells. Electrochem. Solid-State Lett. 6, A174–A177 (2003)CrossRefGoogle Scholar
  90. 90.
    Q. Fu, F. Tietz, D. Sebold, S. Tao, J. Irvine, An efficient ceramic-based anode for solid oxide fuel cells. J. Power Sources 171, 663–669 (2007)CrossRefGoogle Scholar
  91. 91.
    S. Boulfrad, M. Cassidy, E. Traversa, J.T.S. Irvine, Improving the performance of SOFC anodes by decorating perovskite with Ni nanoparticles. ECS Trans. 57, 1211–1216 (2013)CrossRefGoogle Scholar
  92. 92.
    K.B. Yoo, B.H. Park, G.M. Choi, Stability and performance of SOFC with SrTiO3-based anode in CH4 fuel. Solid State Ionics 225, 104–107 (2012)CrossRefGoogle Scholar
  93. 93.
    G. Xiao, C. Jin, Q. Liu, A. Heyden, F. Chen, Ni modified ceramic anodes for solid oxide fuel cells. J. Power Sources 201, 43–48 (2012)CrossRefGoogle Scholar
  94. 94.
    S. Sengodan, S. Choi, A. Jun, T.H. Shin, Y.-W. Ju, H.Y. Jeong, J. Shin, J.T.S. Irvine, G. Kim, Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015)CrossRefGoogle Scholar
  95. 95.
    S. Lee, G. Kim, J.M. Vohs, R.J. Gorte, SOFC anodes based on infiltration of La0.3Sr0.7TiO3. J. Electrochem. Soc. 155, B1179–B1183 (2008)CrossRefGoogle Scholar
  96. 96.
    G. Kim, S. Lee, J.Y. Shin, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gorte, Investigation of the structural and catalytic requirements for high-performance SOFC anodes formed by infiltration of LSCM. Electrochem. Solid-State Lett. 12, B48–B52 (2009)CrossRefGoogle Scholar
  97. 97.
    G. Corre, G. Kim, M. Cassidy, J.M. Vohs, R.J. Gorte, J.T.S. Irvine, Activation and ripening of impregnated manganese containing perovskite SOFC electrodes under redox cycling. Chem. Mater. 21, 1077–1084 (2009)CrossRefGoogle Scholar
  98. 98.
    G. Kim, G. Corre, J.T.S. Irvine, J.M. Vohs, R.J. Gorte, Engineering composite oxide SOFC anodes for efficient oxidation of methane. Electrochem. Solid-State Lett. 11, B16–B19 (2008)CrossRefGoogle Scholar
  99. 99.
    J.-S. Kim, N.L. Wieder, A.J. Abraham, M. Cargnello, P. Fornasiero, R.J. Gorte, J.M. Vohs, Highly active and thermally stable core-shell catalysts for solid oxide fuel cells. J. Electrochem. Soc. 158, B596–B600 (2011)CrossRefGoogle Scholar
  100. 100.
    H. Ding, Z. Tao, S. Liu, J. Zhang, A high-performing sulfur-tolerant and redox-stable layered perovskite anode for direct hydrocarbon solid oxide fuel cells. Sci. Rep. 5, 18129 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Colorado Fuel Cell CenterColorado School of MinesGoldenUSA
  2. 2.Energy & Environmental Science and TechnologyIdaho National LaboratoryIdaho FallsUSA

Personalised recommendations