Real-Time Molecular MRI with Hyperpolarized Silicon Particles

  • Jingzhe Hu
  • Nicholas Whiting
  • Pamela E. Constantinou
  • Mary C. Farach-Carson
  • Daniel D. Carson
  • Pratip K. BhattacharyaEmail author


MRI with Silicon Particles



We thank CPRIT RP150701, NCI R21CA185536, MD Anderson Brain Cancer Moonshot, Gulf Coast Consortium and John S. Dunn Foundation Collaborative Research Award Program, Koch Foundation, and Red and Charline McCombs Institute, MD Anderson IRG grants and institutional research startup for funding support. We also thank Julie Liu, Caitlin V. McCowan, Charles M. Marcus, Maja C. Cassidy, Niki M. Zacharias, David G. Menter, Jennifer S. Davis, Shivanand Pudakalakatti, David E. Volk, Patrick Kee, Prasanta Dutta, Amy Heimberger, David Gorenstein, Anil K. Sood, Seth Gammon, and David Piwnica-Worms for helpful discussion.


  1. 1.
    Erogbogbo F, Yong K-T, Roy I, Hu R, Law W-C, Zhao W, Ding H, Wu F, Kumar R, Swihart MT, Prasad PN (2011) In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5:413–423CrossRefGoogle Scholar
  2. 2.
    Tasciotti E, Liu X, Bhavane R, Plant K, Leonard AD, Price BK, Cheng MM-C, Decuzzi P, Tour JM, Robertson F, Ferrari M (2008) Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat Nanotechnol 3:151–157CrossRefGoogle Scholar
  3. 3.
    Canham LT (2007) Nanoscale semiconducting silicon as a nutritional food additive. Nanotechnology 18:185704CrossRefGoogle Scholar
  4. 4.
    Carlisle EM (1972) Silicon: an essential element for the chick. Science 178:619–621CrossRefGoogle Scholar
  5. 5.
    Loeper J, Goy-Loeper J, Rozensztajn L, Fragny M (1979) The antiatheromatous action of silicon. Atherosclerosis 33:397–408CrossRefGoogle Scholar
  6. 6.
    Eisinger J, Clairet D (1993) Effects of silicon, fluoride, etidronate and magnesium on bone mineral density: a retrospective study. Magnes Res 6:247–249Google Scholar
  7. 7.
    Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HFJ, Evans BAJ, Thompson RPH, Powell JJ, Hampson GN (2003) Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32:127–135CrossRefGoogle Scholar
  8. 8.
    Jugdaohsingh R (2007) Silicon and bone health. J Nutr Health Aging 11:99–110Google Scholar
  9. 9.
    Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, Han H-D, Shahzad MMK, Liu X, Bhavane R, Gu J, Fakhoury JR, Chiappini C, Lu C, Matsuo K, Godin B, Stone RL, Nick AM, Lopez-Berestein G, Sood AK, Ferrari M (2010) Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 70:3687–3696CrossRefGoogle Scholar
  10. 10.
    Reffitt DM, Jugdaohsingh R, Thompson RP, Powell JJ (1999) Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem 76:141–147CrossRefGoogle Scholar
  11. 11.
    O’Neil MJ (2013) The Merck index: an encyclopedia of chemicals, drugs, and biologicals. RSC Publishing, Cambridge, UKGoogle Scholar
  12. 12.
    van der Kolk AG, Hendrikse J, Zwanenburg JJM, Visser F, Luijten PR (2013) Clinical applications of 7T MRI in the brain. Eur J Radiol 82:708–718CrossRefGoogle Scholar
  13. 13.
    Nelson SJ (2011) Assessment of therapeutic response and treatment planning for brain tumors using metabolic and physiological MRI. NMR Biomed 24:734–749Google Scholar
  14. 14.
    Overhauser AW (1953) Polarization of Nuclei in Metals. Phys Rev 92:411–415CrossRefGoogle Scholar
  15. 15.
    Jóhannesson H, Macholl S, Ardenkjaer-Larsen JH (2009) Dynamic nuclear polarization of [1-13 C] pyruvic acid at 4.6 tesla. J Magn Reson 197:167–175CrossRefGoogle Scholar
  16. 16.
    Ardenkjær-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc Natl Acad Sci 100:10158–10163Google Scholar
  17. 17.
    Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PEZ, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen JH, Chen AP, Hurd RE, Odegardstuen L-I, Robb FJ, Tropp J, Murray JA (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med 5:198ra108CrossRefGoogle Scholar
  18. 18.
    Keshari KR, Wilson DM (2014) Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev 43:1627–1659CrossRefGoogle Scholar
  19. 19.
    Nikolaou P, Goodson BM, Chekmenev EY (2015) NMR hyperpolarization techniques for biomedicine. Chemistry 21:3156–3166CrossRefGoogle Scholar
  20. 20.
    Pereira RN, Rowe DJ, Anthony RJ, Kortshagen U (2011) Oxidation of freestanding silicon nanocrystals probed with electron spin resonance of interfacial dangling bonds. Phys Rev B Condens Matter 83:155327CrossRefGoogle Scholar
  21. 21.
    Lee M, Cassidy MC, Ramanathan C, Marcus CM (2011) Decay of nuclear hyperpolarization in silicon microparticles. Phys Rev B Condens Matter 84:035304CrossRefGoogle Scholar
  22. 22.
    Cassidy MC, Chan HR, Ross BD, Bhattacharya PK, Marcus CM (2013) In vivo magnetic resonance imaging of hyperpolarized silicon particles. Nat Nanotechnol 8:363–368CrossRefGoogle Scholar
  23. 23.
    Whiting N, Hu J, Zacharias NM, Lokesh GLR, Volk DE, Menter DG, Rupaimoole R, Previs R, Sood AK, Bhattacharya P (2016) Developing hyperpolarized silicon particles for in vivo MRI targeting of ovarian cancer. J Med Imaging (Bellingham) 3:036001CrossRefGoogle Scholar
  24. 24.
    Cassidy MC (2012) Hyperpolarized silicon particles as in-vivo imaging agents. at
  25. 25.
    Hermanson GT (2013) Bioconjugate techniques. Academic Press, Philadelphia, PA, USACrossRefGoogle Scholar
  26. 26.
    Larson PEZ, Han M, Krug R, Jakary A, Nelson SJ, Vigneron DB, Henry RG, McKinnon G, Kelley DAC (2016) Ultrashort echo time and zero echo time MRI at 7T. MAGMA 29:359–370CrossRefGoogle Scholar
  27. 27.
    Dementyev AE, Li D, MacLean K, Barrett SE (2003) Anomalies in the NMR of silicon: unexpected spin echoes in a dilute dipolar solid. Phys Rev B Condens Matter 68:153302CrossRefGoogle Scholar
  28. 28.
    Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833CrossRefGoogle Scholar
  29. 29.
    Abragam A, Combrisson J, Solomon I (1958) Dynamic polarization of the nuclei of silicon 29 in silicon. Compt Rend 246:683–690Google Scholar
  30. 30.
    Morley GW, Warner M, Stoneham AM, Greenland PT, van Tol J, Kay CWM, Aeppli G (2010) The initialization and manipulation of quantum information stored in silicon by bismuth dopants. Nat Mater 9:725–729CrossRefGoogle Scholar
  31. 31.
    Dementyev AE, Cory DG, Ramanathan C (2008) Dynamic nuclear polarization in silicon microparticles. Phys Rev Lett 100:127601CrossRefGoogle Scholar
  32. 32.
    Lock H, Wind RA, Maciel GE, Zumbulyadis N (1987) 29Si dynamic nuclear polarization of dehydrogenated amorphous silicon. Solid State Commun 64:41–44CrossRefGoogle Scholar
  33. 33.
    Henstra A, Dirksen P, Wenckebach WT (1988) Enhanced dynamic nuclear polarization by the integrated solid effect. Phys Lett A 134:134–136CrossRefGoogle Scholar
  34. 34.
    Aptekar JW, Cassidy MC, Johnson AC, Barton RA, Lee M, Ogier AC, Vo C, Anahtar MN, Ren Y, Bhatia SN, Ramanathan C, Cory DG, Hill AL, Mair RW, Rosen MS, Walsworth RL, Marcus CM (2009) Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents. ACS Nano 3:4003–4008CrossRefGoogle Scholar
  35. 35.
    Atkins TM, Cassidy MC, Lee M, Ganguly S, Marcus CM, Kauzlarich SM (2013) Synthesis of long T1 silicon nanoparticles for hyperpolarized 29Si magnetic resonance imaging. ACS Nano 7:1609–1617CrossRefGoogle Scholar
  36. 36.
    Cassidy MC, Aptekar JW, Lee M, Walsworth RL, Marcus CM (2009) Dynamic nuclear polarization of silicon-based nanoparticle magnetic resonance imaging agents. Proc Intl Soc Mag Reson Med 17:2457. (cds.ismrm.orgGoogle Scholar
  37. 37.
    Bagraev NT, Vlasenko LS (1981) Optical nuclear polarization in heavy-doped silicon. Solid State Commun 40:483–485CrossRefGoogle Scholar
  38. 38.
    Haze O, Corzilius B, Smith AA, Griffin RG, Swager TM (2012) Water-soluble narrow-line radicals for dynamic nuclear polarization. J Am Chem Soc 134:14287–14290CrossRefGoogle Scholar
  39. 39.
    Cassidy MC, Ramanathan C, Cory DG, Ager JW, Marcus CM (2013) Radical-free dynamic nuclear polarization using electronic defects in silicon. Phys Rev B Condens Matter 87:161306CrossRefGoogle Scholar
  40. 40.
    Tu C, Ma X, House A, Kauzlarich SM, Louie AY (2011) PET imaging and biodistribution of silicon quantum dots in mice. ACS Med Chem Lett 2:285–288CrossRefGoogle Scholar
  41. 41.
    Ananta JS, Godin B, Sethi R, Moriggi L, Liu X, Serda RE, Krishnamurthy R, Muthupillai R, Bolskar RD, Helm L, Ferrari M, Wilson LJ, Decuzzi P (2010) Geometrical confinement of gadolinium-based contrast agents in nanoporous particles enhances T1 contrast. Nat Nanotechnol 5:815–821CrossRefGoogle Scholar
  42. 42.
    Bouchard L-S, Anwar MS, Liu GL, Hann B, Xie ZH, Gray JW, Wang X, Pines A, Chen FF (2009) Picomolar sensitivity MRI and photoacoustic imaging of cobalt nanoparticles. Proc Natl Acad Sci U S A 106:4085–4089CrossRefGoogle Scholar
  43. 43.
    Mann AP, Somasunderam A, Nieves-Alicea R, Li X, Hu A, Sood AK, Ferrari M, Gorenstein DG, Tanaka T (2010) Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting. PLoS One 5Google Scholar
  44. 44.
    Mann AP, Tanaka T, Somasunderam A, Liu X, Gorenstein DG, Ferrari M (2011) E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv Mater 23Google Scholar
  45. 45.
    Whiting N, Hu J, Shah JV, Cassidy MC, Cressman E, Millward NZ, Menter DG, Marcus CM, Bhattacharya PK (2015) Real-time MRI-guided catheter tracking using hyperpolarized silicon particles. Sci Rep 5:12842CrossRefGoogle Scholar
  46. 46.
    Golman K, Zandt RI, Lerche M, Pehrson R, Ardenkjaer-Larsen JH (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855–10860CrossRefGoogle Scholar
  47. 47.
    Chekmenev EY, Norton VA, Weitekamp DP, Bhattacharya P (2009) Hyperpolarized (1)H NMR employing low gamma nucleus for spin polarization storage. J Am Chem Soc 131:3164–3165CrossRefGoogle Scholar
  48. 48.
    Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  49. 49.
    Peng X-H, Qian X, Mao H, Wang AY, Chen ZG, Nie S, Shin DM (2008) Targeted magnetic iron oxide nanoparticles for tumor imaging and therapy. Int J Nanomedicine 3:311–321Google Scholar
  50. 50.
    Dutta P, Martinez GV, Gillies RJ (2014) Nanodiamond as a new hyperpolarizing agent and its 13C MRS. J Phys Chem Lett 5:597–600CrossRefGoogle Scholar
  51. 51.
    Rej E, Gaebel T, Boele T, Waddington DEJ, Reilly DJ (2015) Hyperpolarized nanodiamond with long spin-relaxation times. Nat Commun 6:8459CrossRefGoogle Scholar
  52. 52.
    Santos HA (2014) Porous silicon for biomedical applications. Elsevier, Cambridge, UKGoogle Scholar
  53. 53.
    Fain SB, Korosec FR, Holmes JH, O’Halloran R, Sorkness RL, Grist TM (2007) Functional lung imaging using hyperpolarized gas MRI. J Magn Reson Imaging 25:910–923CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jingzhe Hu
    • 1
    • 2
  • Nicholas Whiting
    • 1
  • Pamela E. Constantinou
    • 3
  • Mary C. Farach-Carson
    • 4
  • Daniel D. Carson
    • 3
  • Pratip K. Bhattacharya
    • 1
    Email author
  1. 1.Department of Cancer Systems ImagingThe University of Texas MD Anderson Cancer CenterHoustonUSA
  2. 2.Department of BioengineeringRice UniversityHoustonUSA
  3. 3.Department of BioSciencesRice UniversityHoustonUSA
  4. 4.Department of Diagnostic and Biomedical SciencesThe University of Texas Health Science Center, School of DentistryHoustonUSA

Personalised recommendations