Advertisement

Plant Ecology pp 303-327 | Cite as

Thermal Balance of Plants and Plant Communities

  • Ernst-Detlef Schulze
  • Erwin Beck
  • Nina Buchmann
  • Stephan Clemens
  • Klaus Müller-Hohenstein
  • Michael Scherer-Lorenzen
Chapter

Abstract

This chapter focuses on the physical basis of the exchange of solar energy. As an introduction to the topic, the energy balance of the atmosphere is explained, followed by a section on the microclimate near the ground surface. It is the exchange of energy that determines the temperature near the ground as modified by biotic and abiotic factors. On the basis of the understanding of climate drivers near the Earth’s surface, the energy balance of a leaf is discussed, which mainly involves adaptations of the leaf surface to absorb or reflect solar energy and a balance of sensible and latent heat transfer. Plants are adapted to cope with climate extremes on the basis of modifications in their physical energy transfer.

References

  1. Buchmann N, Kao WY, Ehleringer JR (1996) Carbon dioxide concentrations within forest canopies—variation with time, stand structure, and vegetation type. Glob Change Biol 2:421–432CrossRefGoogle Scholar
  2. Ehleringer JR (1980) Leaf morphology and reflectance in relation to water and temperature stress. In: Turner NC, Kramer PJ (eds) Adaptations of plants to water and high temperature stress. Wiley, New YorkGoogle Scholar
  3. Gates DM (1965) Energy exchange in the biosphere. Harper and Row, New YorkGoogle Scholar
  4. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Bronnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: atmosphere and surface. In: Climate change 2013: the physical science basis. Contribution of Working Group I to the 5th assessment report. Cambridge University Press, CambridgeGoogle Scholar
  5. IPCC—Intergovernmental Panel on Climate Change (2013) Climate change 2013: the physical science basis. Contribution of working group I to the 5th assessment report. Cambridge University Press, CambridgeGoogle Scholar
  6. Jones HG (2014) Plants and microclimate; a quantitative approach to environmental plant physiology. Cambridge University Press, CambridgeGoogle Scholar
  7. Kraus G (1911) Boden und Klima auf kleinstem Raum; Versuch einer exakten Behandlung des Standortes auf dem Wellenkalk. Gustav Fischer, JenaGoogle Scholar
  8. Lange OL (1959) Untersuchungen über den Wärmehaushalt und Hitzeresistenz mauretanischer Wüsten- und Savannenpflanzen. Flora 147:595–651Google Scholar
  9. Larcher W (2003) Physiological plant ecology, 4th edn. Springer, BerlinCrossRefGoogle Scholar
  10. List RJ (1971) Smithsonian meteorological tables. Smithsonian Institution Press, Washington, DCGoogle Scholar
  11. Lutgens FK, Tarbuck EJ, Tasa D (2013) The atmosphere: an introduction to meteorology, 12th edn. Prentice Hall, Upper Saddle RiverGoogle Scholar
  12. Mitchell JFB (1989) The greenhouse effect and climate change. Rev Geophys 27:115–139CrossRefGoogle Scholar
  13. Monteith JL, Unsworth MH (2013) Principles of environmental physics, 4th edn. Academic Press, BurlingtonGoogle Scholar
  14. Monson R, Baldocchi D (2014) Terrestrial biosphere–atmosphere fluxes, 1st edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  15. Oke T, Christen A (2015) Boundary layer climates, 1st edn. Chapman & Hall, RoutledgeGoogle Scholar
  16. Scheffer F (2002) Lehrbuch der Bodenkunde. Scheffer/Schachtschabel, 15th edn. Spektrum Akademischer Verlag, HeidelbergGoogle Scholar
  17. Schulze E-D (1972) Die Wirkung von Licht und Temperatur auf den CO2-Gaswechsel verschiedener Lebensformen aus der Krautschicht eines montanen Buchenwaldes. Oecologia 9:235–258CrossRefGoogle Scholar
  18. Schulze E-D (1982) Plant life forms and their carbon, water and nutrient relations. Encycl Plant Physiol 128:616–676Google Scholar
  19. Schulze E-D, Eller BM, Thomas DA, von Willert DJ, Brinckmann E (1980) Leaf temperatures and energy balance of Welwitschia mirabilis in its natural habitat. Oecologia 44:258–262CrossRefGoogle Scholar
  20. Shakel KA, Hall AE (1979) Reversible leaflet movements in relation to drought adaptation in cowpea, Vigna unguiculata (L.) Walp. Aust J Plant Physiol 6:265–276Google Scholar
  21. Smith WK (1978) Temperatures in desert plants: another perspective on the ability of leaf size. Science 201:614–616CrossRefGoogle Scholar
  22. Stott PA, Tett SFB, Jones GS (2001) External control of 20th century temperature by natural and anthropogenic forcings. Science 290:2133–2137CrossRefGoogle Scholar
  23. Stull RB (1988) An introduction to boundary layer meteorology. Springer, DordrechtCrossRefGoogle Scholar
  24. Wallace JM, Hobbs PV (2006) Atmospheric science: an introductory survey. Academic Press, San DiegoGoogle Scholar
  25. Walter H (1960) Grundlagen der Pflanzenverbreitung. Teil I Standortlehre. Ulmer, StuttgartGoogle Scholar
  26. Wild M, Folini D, Schar C, Loeb N, Dutton EG, Konig-Langlo G (2013) The global energy balance from a surface perspective. Clima Dyn 40:3107–3134CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ernst-Detlef Schulze
    • 1
  • Erwin Beck
    • 2
  • Nina Buchmann
    • 3
  • Stephan Clemens
    • 2
  • Klaus Müller-Hohenstein
    • 4
  • Michael Scherer-Lorenzen
    • 5
  1. 1.Max Planck Institute for BiogeochemistryJenaGermany
  2. 2.Department of Plant PhysiologyUniversity of BayreuthBayreuthGermany
  3. 3.Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
  4. 4.Department of BiogeographyUniversity of BayreuthBayreuthGermany
  5. 5.Chair of Geobotany, Faculty of BiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations