Advertisement

Plant Ecology pp 165-202 | Cite as

Water Deficiency (Drought)

  • Ernst-Detlef Schulze
  • Erwin Beck
  • Nina Buchmann
  • Stephan Clemens
  • Klaus Müller-Hohenstein
  • Michael Scherer-Lorenzen
Chapter

Abstract

This chapter first explains why plants have a greater demand for water than animals. Following a look at the physico-chemical properties of water, the water potential concept is introduced, which is used to analyse the movement of water into and through plants. Most plant species have to maintain a hydrated state; that is, they are homoiohydric. After temperature, precipitation is the most dominant environmental factor determining the distribution of vegetation at the global scale. Plants respond to fluctuations in water supply with a range of mechanisms, which are discussed at the molecular level in this chapter. These include adjustment of osmotic potentials, regulation of the stomatal aperture, and modulation of resistance to water flow by aquaporins—water channels residing in cellular membranes. Also, a plant actively modulates its growth, depending on water availability. The water status is sensed by a plant in an unknown fashion and is translated into adequate responses. These are predominantly mediated by the phytohormone abscisic acid. The corresponding signal transduction events are explained in this chapter. The final section discusses two photosynthesis variants that are characterized by higher water use efficiency and therefore represent adaptations to water scarcity. Both C4 photosynthesis and crassulacean acid metabolism photosynthesis have evolved independently many times and are of major ecological importance. Evolutionary trajectories can be postulated that illustrate how complex traits can arise in distinct steps.

References

  1. Agre P (2004) Aquaporin water channels (Nobel lecture). Angew Chem Int Ed Engl 43:4278–4290PubMedCrossRefPubMedCentralGoogle Scholar
  2. Bartels D, Alexander R, Schneider K et al (1993) Desiccation-related gene products analyzed in a resurrection plant and in barley embryos. In: Close TJ, Bray EA (eds) Plant responses to cellular dehydration during environmental stress, Current topics in plant physiology, vol 10, pp 119–127. American Society of Plant Physiologists, RockvilleGoogle Scholar
  3. Borland AM, Hartwell J, Weston DJ et al (2014) Engineering crassulacean acid metabolism to improve water-use efficiency. Trends Plant Sci 19:327–338PubMedPubMedCentralCrossRefGoogle Scholar
  4. Chater CCC, Oliver J, Casson S, Gray JE (2014) Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytol 202:376–391PubMedCrossRefPubMedCentralGoogle Scholar
  5. Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618PubMedPubMedCentralCrossRefGoogle Scholar
  6. Christin P-A, Osborne CP (2014) The evolutionary ecology of C4 plants. New Phytol 204:765–781PubMedCrossRefPubMedCentralGoogle Scholar
  7. Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16:293–300PubMedCrossRefPubMedCentralGoogle Scholar
  8. Christmann A, Weiler EW, Steudle E, Grill E (2007) A hydraulic signal in root-to-shoot signalling of water shortage. Plant J 52:167–174PubMedCrossRefPubMedCentralGoogle Scholar
  9. Claeys H, Inzé D (2013) The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol 162:1768–1779PubMedPubMedCentralCrossRefGoogle Scholar
  10. Cushman JC (2001) Crassulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol 127:1439–1448PubMedPubMedCentralCrossRefGoogle Scholar
  11. Cushman JC, Bohnert HJ (1999) Crassulacean acid metabolism: molecular genetics. Annu Rev Plant Physiol Plant Mol Biol 50:305–332PubMedCrossRefPubMedCentralGoogle Scholar
  12. Cushman JC, Tillett RL, Wood JA et al (2008) Large-scale mRNA expression profiling in the common ice plant, Mesembryanthemum crystallinum, performing C3 photosynthesis and crassulacean acid metabolism (CAM). J Exp Bot 59:1875–1894PubMedCrossRefPubMedCentralGoogle Scholar
  13. Farrant JM, Moore JP (2011) Programming desiccation-tolerance: from plants to seeds to resurrection plants. Curr Opin Plant Biol 14:340–345PubMedCrossRefPubMedCentralGoogle Scholar
  14. Gowik U, Westhoff P (2011) The path from C-3 to C-4 photosynthesis. Plant Physiol 155:56–63PubMedCrossRefPubMedCentralGoogle Scholar
  15. Harb A, Krishnan A, Ambavaram MMR, Pereira A (2010) Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth. Plant Physiol 154:1254–1271PubMedPubMedCentralCrossRefGoogle Scholar
  16. Hauser F, Waadt R, Schroeder JI (2011) Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21:R346–R355PubMedPubMedCentralCrossRefGoogle Scholar
  17. Heckmann D, Schulze S, Denton A et al (2013) Predicting C4 photosynthesis evolution: modular, individually adaptive steps on a Mount Fuji fitness landscape. Cell 153:1579–1588PubMedCrossRefPubMedCentralGoogle Scholar
  18. Henzler T, Waterhouse RN, Smyth AJ et al (1999) Diurnal variations in hydraulic conductivity and root pressure can be correlated with the expression of putative aquaporins in the roots of Lotus japonicus. Planta 210:50–60PubMedCrossRefPubMedCentralGoogle Scholar
  19. Hubbard KE, Nishimura N, Hitomi K et al (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev 24:1695–1708PubMedPubMedCentralCrossRefGoogle Scholar
  20. Javot H, Maurel C (2002) The role of aquaporins in root water uptake. Ann Bot 90:301–313PubMedPubMedCentralCrossRefGoogle Scholar
  21. Kang J, Hwang J-U, Lee M et al (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107:2355–2360PubMedPubMedCentralCrossRefGoogle Scholar
  22. Katul GG, Oren R, Manzoni S et al (2012) Evapotranspiration: a process driving mass transport and energy exchange in the soil–plant–atmosphere–climate system. Rev Geophys 50:RG3002CrossRefGoogle Scholar
  23. Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175CrossRefGoogle Scholar
  24. Kim T-H, Böhmer M, Hu H et al (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591PubMedPubMedCentralCrossRefGoogle Scholar
  25. Kollist H, Nuhkat M, Roelfsema MRG (2014) Closing gaps: linking elements that control stomatal movement. New Phytol 203:44–62PubMedCrossRefPubMedCentralGoogle Scholar
  26. Langdale JA (2011) C4 cycles: past, present, and future research on C4 photosynthesis. Plant Cell 23:3879–3892Google Scholar
  27. Larcher W (2003) Physiological plant ecology, 4th edn. Springer, BerlinCrossRefGoogle Scholar
  28. Lawlor DW (2013) Genetic engineering to improve plant performance under drought: physiological evaluation of achievements, limitations, and possibilities. J Exp Bot 64:83–108PubMedCrossRefPubMedCentralGoogle Scholar
  29. Lüttge U (1987) Carbon dioxide and water demand: crassulacean acid metabolism (CAM), a versatile ecological adaptation exemplifying the need for integration in ecophysiological work. New Phytol 106:593–629CrossRefGoogle Scholar
  30. Lüttge U, Kluge M, Bauer G (1994) Botanik. Weinheim, VCHGoogle Scholar
  31. Maggio A, Joly RJ (1995) Effects of mercuric chloride on the hydraulic conductivity of tomato root systems (evidence for a channel-mediated water pathway). Plant Physiol 109:331–335PubMedPubMedCentralCrossRefGoogle Scholar
  32. Maggio A, Zhu J-K, Hasegawa PM, Bressan RA (2006) Osmogenetics: Aristotle to Arabidopsis. Plant Cell 18:1542–1557PubMedPubMedCentralCrossRefGoogle Scholar
  33. Maurel C, Boursiac Y, Luu D-T et al (2015) Aquaporins in plants. Physiol Rev 95:1321–1358PubMedCrossRefPubMedCentralGoogle Scholar
  34. Maurel C, Verdoucq L, Luu D-T, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624PubMedCrossRefPubMedCentralGoogle Scholar
  35. McDowell N, Pockman WT, Allen CD et al (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739PubMedCrossRefPubMedCentralGoogle Scholar
  36. Murata K, Mitsuoka K, Hirai T et al (2000) Structural determinants of water permeation through aquaporin-1. Nature 407:599–605PubMedCrossRefPubMedCentralGoogle Scholar
  37. Qin X, Zeevaart JA (1999) The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean. Proc Natl Acad Sci U S A 96:15354–15361PubMedPubMedCentralCrossRefGoogle Scholar
  38. Sage RF, Sage TL, Kocacinar F (2012) Photorespiration and the evolution of C4 photosynthesis. Annu Rev Plant Biol 63:19–47PubMedCrossRefPubMedCentralGoogle Scholar
  39. Silvera K, Neubig KM, Whitten WM et al (2010) Evolution along the crassulacean acid metabolism continuum. Funct Plant Biol 37:995–1010CrossRefGoogle Scholar
  40. Skirycz A, Inzé D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203PubMedCrossRefPubMedCentralGoogle Scholar
  41. Steudle E (2001) The cohesion–tension mechanism and the acquisition of water by plant roots. Annu Rev Plant Physiol Plant Mol Biol 52:847–875PubMedCrossRefPubMedCentralGoogle Scholar
  42. Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788Google Scholar
  43. Szabados L, Savouré A (2010) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97CrossRefGoogle Scholar
  44. Tenhaken R (2015) Cell wall remodeling under abiotic stress. Front Plant Sci 5:771PubMedPubMedCentralCrossRefGoogle Scholar
  45. Verslues PE, Juenger TE (2011) Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol 14(3):240–245PubMedCrossRefPubMedCentralGoogle Scholar
  46. Wise MJ, Tunnacliffe A (2004) POPP the question: what do LEA proteins do? Trends Plant Sci 9:13–17PubMedCrossRefPubMedCentralGoogle Scholar
  47. Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208:2819–2830PubMedCrossRefPubMedCentralGoogle Scholar
  48. Yoshiba Y, Kiyosue T, Nakashima K et al (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38:1095–1102PubMedCrossRefPubMedCentralGoogle Scholar
  49. Yuan F, Yang H, Xue Y et al (2014) OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514:367–371PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ernst-Detlef Schulze
    • 1
  • Erwin Beck
    • 2
  • Nina Buchmann
    • 3
  • Stephan Clemens
    • 2
  • Klaus Müller-Hohenstein
    • 4
  • Michael Scherer-Lorenzen
    • 5
  1. 1.Max Planck Institute for BiogeochemistryJenaGermany
  2. 2.Department of Plant PhysiologyUniversity of BayreuthBayreuthGermany
  3. 3.Department of Environmental Systems ScienceETH ZurichZurichSwitzerland
  4. 4.Department of BiogeographyUniversity of BayreuthBayreuthGermany
  5. 5.Chair of Geobotany, Faculty of BiologyUniversity of FreiburgFreiburgGermany

Personalised recommendations