Advertisement

Turbinenschaufel-Kühlung

  • Bernhard WeigandEmail author
Chapter
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Eine der wirkungsvollsten Methoden zur Steigerung der Leistungsdichte und des thermischen Wirkungsgrades einer Gasturbine im Kombiprozess besteht in der Anhebung der Turbineneintrittstemperatur (s. auch Kap. 2). Abbildung 17-1 zeigt die Entwicklung der Eintrittstemperatur seit 1950. Man erkennt, dass zu Beginn der 50er-Jahre die Gasturbinenschaufeln ohne eine aktive Kühlung auskamen. Dies lag natürlich an den niedrigen Heißgastemperaturen von rund 1000 K, die am Eintritt der Turbine auftraten. Die Entwicklung neuer, leistungsfähiger Gasturbinen mit höheren thermischen Wirkungsgraden verlangte aber gerade eine Steigerung der Eintrittstemperatur in die Turbine.

Notes

Danksagung

Für zahlreiche wertvolle Hinweise und Diskussionen zum Thema der Kühlungsauslegung möchte ich mich ganz herzlich bei Herrn K. Semmler (MTU) bedanken. Weiterhin möchte ich mich bei der ASME für die freundliche Genehmigung zum Abdruck der Abb. 17.8, 17.16 und 17.19, bei dem VDI, Düsseldorf für die freundliche Genehmigung zum Abdruck der Abb. 17.2[b] und 17.3[b], bei Herrn Prof. Berg für die freundliche Genehmigung zum Abdruck der Abb. 17.1, bei dem VKI für die freundliche Genehmigung zum Abdruck der Abb. 17.11 und bei Annals of the New York Academy of Sciences für die freundliche Genehmigung zum Abdruck der Abb. 17.2[a], 17.3[a] und 17.6 bedanken.

Literatur

  1. 1.
    Annerfeldt MO, Persson JL, Torisson T (2001) Experimental investigation of impingement cooling with turbulators or surface enlarging elements. ASME 2001-GT-149 Google Scholar
  2. 2.
    Amro M et al. (2007) An experimental investigation of the heat transfer in a ribbed triangular cooling channel. Int J of Thermal Sciences 46, 491–500 CrossRefGoogle Scholar
  3. 3.
    Armstrong J, Winstanley D (1988) A review of staggered array pin fin heat transfer for turbine cooling applications. J of Turbomachinery 110, 94–103 CrossRefGoogle Scholar
  4. 4.
    Beeck A et al. (2003) Cooling system for the leading edge of a hollow blade for a gas turbine. EP0892149 Google Scholar
  5. 5.
    Berg HP (1983) Experimentelle Bestimmung des örtlichen inneren Wärmeübergangs von Turbinenleit- und -laufschaufeln mit Hilfe der Analogie zwischen Wärme- und Stoffübergang. Dissertation, TU Darmstadt Google Scholar
  6. 6.
    Bohn D et al. (2002) Experimental and numerical investigation of a steam-cooled vane. ASME GT-2002-30210 Google Scholar
  7. 7.
    Brauckmann D (2006) Experimentelle Untersuchung von Filmkühlungsvorgängen an konturierten Bohrungen. Dissertation, Universität Stuttgart Google Scholar
  8. 8.
    Dailey GM (2000) Design and calculation issues. VKI-LS 2000-03: Aero-thermal performance of internal cooling systems in turbomachinery Google Scholar
  9. 9.
    Ekkad SV, Kontrovitz D (2002) Jet impingement heat transfer on dimpled target surfaces. Int Journal of Heat and Fluid Flow 23, 22–28 CrossRefGoogle Scholar
  10. 10.
    Faulkner FE (1971) Analytical investigation of chord size and cooling methods on turbine blade requirement. NASA CR-120882 Google Scholar
  11. 11.
    Florschuetz LW, Truman CR, Metzger DE (1981) Streamwise flow and heat transfer distributions for jet array impingement with crossflow. ASME 81-GT-77 Google Scholar
  12. 12.
    Florschuetz LW, Metzger DE et al. (1982) Jet array impingement flow distributions and heat transfer characteristics. NASA CR-3630 Google Scholar
  13. 13.
    Frey K (1934) Verminderung des Strömungsverlustes in Kanälen durch Leitflächen. Forschung 5, 105–117 Google Scholar
  14. 14.
    Gauntner JW, Livingwood JNB, Hrycak P (1970) Survey of literaure on flow characteristics of a single turbulent jet impinging on a flat plate. NASA TN D-5652 Google Scholar
  15. 15.
    Goldstein RJ (1971) Film cooling. In: Irvine TF, Hartnett JP (Ed) Advances in heat transfer. Academic Press New York, Vol 7, pp 321–379 Google Scholar
  16. 16.
    Goldstein RJ (Ed) (2001) Heat transfer in gas turbine systems. Annals of the New York Academy of Sciences 934 Google Scholar
  17. 17.
    Gritsch M (1998) Experimentelle Untersuchungen zum aerothermischen Verhalten nichtzylindrischer Filmkühlbohrungen. Dissertation, Universität Karlsruhe Google Scholar
  18. 18.
    Halls GA (1969) Air cooling of turbine blades and vanes. In: Supersonic turbojet propulsion systems and components. AGARDograph 120, 262ff. Google Scholar
  19. 19.
    Han B, Goldstein RJ (2001) Jet impingement heat transfer in gas turbine systems. In: Annals of the New York Academy of Sciences 934, 147–161 Google Scholar
  20. 20.
    Han JC, Jenkins PE (1982) Prediction of film cooling effectiveness of steam. ASME 82-GT-100 Google Scholar
  21. 21.
    Han JC (1984) Heat transfer and friction in channels with two opposite rib-roughened walls. J Heat Transfer 106, 774–781 CrossRefGoogle Scholar
  22. 22.
    Han JC, Park JS (1988) Developing heat transfer in rectangular channels with rib turbulators. Int J Heat and Mass Transfer 31, 183–195 CrossRefGoogle Scholar
  23. 23.
    Han JC, Huang J, Pang Lee C (1993) Augmented Heat Transfer in Square Channels with Wedge-Shaped and Delta-Shaped Turbulence Promoters. J of Enhanced Heat Transfer 1, 37–52 CrossRefGoogle Scholar
  24. 24.
    Han JC, Dutta S (1995) Internal convection heat transfer and cooling: An experimental approach. VKI-LS: Heat transfer and cooling in gas turbines Google Scholar
  25. 25.
    Han JC, Zhang P (1991) Effects of rib-angle orientation on local mass transfer distribution in three-pass smooth and rib-roughened channels. J of Turbomachinery 113, 123–130 CrossRefGoogle Scholar
  26. 26.
    Han JC, Dutta S, Ekkad SV (2001) Gas turbine heat transfer and cooling technology. Taylor & Francis, London Google Scholar
  27. 27.
    Harasgama SP (1995) Aerothermal aspects of gas turbine flows. VKI-LS 1995-05: Heat transfer and cooling in gas turbines Google Scholar
  28. 28.
    Hirota M, Fujita H et al. (1999) Heat/mass transfer characteristics in two-pass smooth channels with sharp 180-deg. turn. Int J Heat Mass Transfer 42, 3757–3770 CrossRefGoogle Scholar
  29. 29.
    Johnson BV, Wagner JH, Steuber GD (1993) Effects of rotation on coolant passages with trips normal and skewed to the flow. NASA-CR-4396 Google Scholar
  30. 30.
    Jubran BA, Hamdan MA, Abdualh RM (1993) Enhanced heat transfer, missing pin, and optimization for cylindrical pin fin arrays. ASME J Heat Transfer 115, 576–583 CrossRefGoogle Scholar
  31. 31.
    Kail C (1997) Bewertung der zur Zeit besten gasbefeuerten Kraftwerksprozesse mit Heavy-Duty Gasturbinen, VDI-Berichte 1321. VDI, Düsseldorf Google Scholar
  32. 32.
    Kays WM, Crawford ME, Weigand B (2004) Convective heat and mass transfer. Mc Graw-Hill, New York Google Scholar
  33. 33.
    Kercher DM, Tabakoff W (1970) Heat transfer by a square array of round air jets impinging perpendicular to a flat surface including the effects of spent air. J of Engng of Power 73, 73–82 CrossRefGoogle Scholar
  34. 34.
    Kestin J, Wood RT (1970) The influence of turbulence on mass transfer from cylinders. J Heat Transfer 93, 321–327 CrossRefGoogle Scholar
  35. 35.
    Krückels J et al. (2007) Turbine blade thermal design process enhancements for increased firing temperatures and reduced coolant flow. ASME GT2007-27457, Montreal Google Scholar
  36. 36.
    Krüger U et al. (2001) Analysis of the influence of cooling steam conditions on the cooling efficiency of a steam cooled vane using the conjugate calculation technique. ASME 2001-GT-0166 Google Scholar
  37. 37.
    Lakshminarayana B (1996) Fluid dynamics and heat transfer of turbomachinery. Wiley & Sons, New York Google Scholar
  38. 38.
    Leontiev AI (1999) Heat and mass transfer problems for film cooling. J Heat Transfer 121, 509–527 CrossRefGoogle Scholar
  39. 39.
    Ligrani PM, Oliveira MM, Blaskovich T (2003) Comparison of heat transfer augmentation techniques. AIAA Journal 41, 337–362 CrossRefGoogle Scholar
  40. 40.
    Lutum E et al. (2000) Film cooling on a convex surface with zero pressure gradient flow. Int J Heat and Mass Transfer 43, 2973–2987 CrossRefGoogle Scholar
  41. 41.
    Metzger DE, Plevich CW, Fan C S (1984) Pressure loss through sharp 180-deg turns in smooth rectangular channels. J of Engng for Gas Turbines and Power 106, 677–681 CrossRefGoogle Scholar
  42. 42.
    Metzger DE (1985) Cooling techniques for gas turbine airfoils – A survey. Proc of AGARD Conf, Bergen (Norwegen), pp 1–13 Google Scholar
  43. 43.
    Nomoto H et al. (1997) The Advanced Cooling Technology for the 1 500 \({}^{\circ}\)C Class Gas Turbines: Steam Cooled Vanes and Air-Cooled Blades. ASME J of Eng For Gas Turbines and Power 119, 624–632Google Scholar
  44. 44.
    Pagenkopf U (1996) Untersuchung der lokalen konvektiven Transportvorgänge auf Prallflächen. Dissertation, TU Darmstadt Google Scholar
  45. 45.
    Pape D (2008) Experimentelle Untersuchung der Strömung und der Wärmeübertragung in 180°-Umlenkungen. Dissertation, Universität Stuttgart Google Scholar
  46. 46.
    Plevich CW (1985) Effects of turning vanes, radial ribs and corner fillets on flow patterns and pressure losses in rectangular duct 180-deg turns. MS Thesis, AZ Google Scholar
  47. 47.
    Rathjen L (2003) Experimentelle Wärme-/Stoffübergangsuntersuchungen an einem rotierenden Kühlkanalmodell mit Rippen. Dissertation, TU Darmstadt Google Scholar
  48. 48.
    Schabacker J (1998) PIV investigation of the flow characteristics in internal coolant passages of gas turbine airfoils with two ducts connected by a sharp 180° bend. Dissertation, EPFL, Lausanne Google Scholar
  49. 49.
    Schulenberg T, Kopper F, Richardson J (1995) An advanced blade design for V84.3 gas turbines. VDI-Bericht, Nr. 1185, 257–275, Düsseldorf Google Scholar
  50. 50.
    Sieger K (1993) Vergleich der Leistungsfähigkeit erweiterter k-\(\varepsilon\)-Turbulenzmodelle bei der Berechnung transitionaler Grenzschichten an Gasturbinenschaufeln. Dissertation, Univ. KarlsruheGoogle Scholar
  51. 51.
    Spring S et al. (2008) CFD heat transfer predictions for gas turbine combustor impingement cooling configuration, The 12th Int. Symp. in Transport Phenomena and Dynamics of Rot. Machinery, Honolulu Google Scholar
  52. 52.
    Takeishi K-I, Aoki S (2001) Contribution of heat transfer to turbine blades and vanes for high temperature industrial gas turbines. Part 1: Film cooling. Annals of the New York Academy of Sciences 934, 305–312 CrossRefGoogle Scholar
  53. 53.
    Taslim ME, Setayeshgar L, Spring SD (2000) An experimental evaluation of advanced leading edge impingement cooling concepts. ASME GT-0222 Google Scholar
  54. 54.
    Tsukagoshi K et al. (2002) Trial operation results of steam cooled M501H type gas turbine. MHI Ltd. Technical Review 39, 85–89 Google Scholar
  55. 55.
    Vassiliev V et al. (2005) Thermal state analysis of industrial gas turbine blades. ASME GT2005, 68951, Nevada Google Scholar
  56. 56.
    Wolfersdorf Jv, Weigand B, Schnieder M (2006) Heat Transfer Enhancement Techniques and their Application in Turbomachinery, Flow phenomena in nature: A challenge to engineering design, Liebe R (Ed), ISBN 1-84564-001-2, S 470–504 Google Scholar
  57. 57.
    Wang TS, Chyu MK (1994) Heat convection in a 180-deg. turning duct with different turn configurations. J of Thermoph and Heat Transfer 8, 595–601 CrossRefGoogle Scholar
  58. 58.
    Weigand B, Semmler K, Wolfersdorf Jv (2001) Heat transfer technology for internal passages of air-cooled blades for heavy-duty gas turbines. Annals of the New York Academy of Sciences 934, 179–193 CrossRefGoogle Scholar
  59. 59.
    Weigand B, Wolfersdorf Jv, Neumann SO (2005) Entwicklungsstand der Kühltechnologien für Gasturbinenschaufeln moderner, hocheffizienter Gasturbinen, Proc. der VGB Fachtagung „Gasturbinen und Gasturbinenbetrieb“, Dresden Google Scholar
  60. 60.
    Yamawaki S (2001) Verifying heat transfer analysis of high pressure cooled turbine blades and disk. Annals of the New York Academy of Sciences 934, 505–512 CrossRefGoogle Scholar
  61. 61.
    Yeh FC, Stepka FS (1984) Review and status of heat transfer technology for internal passages of air-cooled turbine blades. NASA TP 2232:1–33 Google Scholar
  62. 62.
    Yoshida T (2001) Cooling systems for ultra-high temperature turbines. Annals of the New York Academy of Sciences 934, 194–205 CrossRefGoogle Scholar
  63. 63.
    Zuckermann N, Lior N (2005) Impingement heat transfer: correlations and numerical modeling. ASME J Heat Transfer 127, 544–552 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Thermodynamik der Luft- und RaumfahrtUniversität StuttgartStuttgartDeutschland

Personalised recommendations