Advertisement

Vergasung fester und flüssiger Brennstoffe

  • Andreas HeilosEmail author
  • Jaan Hellat
  • Michael Huth
  • Jürgen Karg
Chapter
Part of the VDI-Buch book series (VDI-BUCH)

Zusammenfassung

Gasturbinen werden bis heute noch fast ausschließlich zur Verstromung von Erdgas oder Heizöl eingesetzt. Die Vorschaltung einer Vergasungsanlage ermöglicht auch die Nutzung von festen oder flüssigen Brennstoffen wie Kohle oder Raffinerierückständen, die sonst nicht direkt in einer Gasturbine bzw. GuD-Anlagemit hohem Wirkungsgrad umgesetzt werden könnten. Diese Kopplung aus Vergasungsanlage mit nachgeschalteter Gasreinigung und anschließender Nutzung des gereinigten Synthesegases (Syngas) in einer GuD-Anlage wird als IGCC-Kraftwerk (IGCC = Integrated Gasification Combined Cycle) bezeichnet.

Literatur

  1. 1.
    Farina L et al. (1999) ISAB IGCC plant enters operation phase. Modern Power Systems, August, 49–51 Google Scholar
  2. 2.
    Hannemann F et al. (2003) Pushing Forward IGCC Technology at Siemens. Gasification Technologies Conference, San Francisco, California Google Scholar
  3. 3.
    Huth M et al. (1998) Verbrennung von Synthesegas in Gasturbinen. Brennstoff-Wärme-Kraft 50, 9:35–39 Google Scholar
  4. 4.
    Huth M et al. (2000) Operation Experiences of Siemens IGCC Gas Turbines Using Gasification Products from Coal and Refinery Residues, Paper 2000-GT-26. ASME Turbo Expo 2000, Munich, May Google Scholar
  5. 5.
    Pruschek R et al. (1997) Kohlekraftwerke der Zukunft, Teil 1 und Teil 2. Brennstoff-Wärme-Kraft 9/10, 11/12 Google Scholar
  6. 6.
    Zon GD, Winter HMJde (1998) Recent operation Experience at Buggenum IGCC. EPRI/GTC Gasification Technologies Conference, San Francisco, California, October 4–7 Google Scholar
  7. 7.
    Scherer V et al. (1994) The ABB type GT13E2 Gas Turbine and its conversion to Mbtu Syngas Firing for Gasification Projects. 1st International conference on combined cycle power generation, Calcutta, India, January 6–8 Google Scholar
  8. 8.
    Harasgama P, Reyser K, Griffin T (1997) The GT13E2 Medium BTU Gas Turbine. Gasification Technology in Practice, Milan, February Google Scholar
  9. 9.
    Del Bravo R et al. (1998) Api Energia IGCC Plant is Fully Integrated with Refinery, June, MPS (Modern Power Systems) Google Scholar
  10. 10.
    Del Bravo R, Reyser K (1999) Preliminary Results of Testing and Commissioning – Api Energia 276 MW IGCC Plant in Italy. Power-Gen Europe Google Scholar
  11. 11.
    Cerbe G (2008) Grundlagen der Gastechnik, 7. Aufl. Hanser, München Wien, Abschn. 2.2.4 Google Scholar
  12. 12.
    Warnatz J, Maas U, Dibble RW (2001) Technische Verbrennung, 3. Aufl. Springer, Berlin Heidelberg New York, Abschn. 8.1 Google Scholar
  13. 13.
    Hoffmann S (1994) Untersuchungen des Stabilisierungsverhaltens und der Stabilitätsgrenzen von Drallflammen mit innerer Rückströmzone. Dissertation, Universität Karlsruhe (TH), Abschn. 2.4 Google Scholar
  14. 14.
    Rudolf Günther R (1984) Verbrennung und Feuerungen. Springer, Berlin Heidelberg New York, Abschn. 4.3.6.1 Google Scholar
  15. 15.
    Gadde S et al. (2006) Syngas Capable Combustion Systems Development for Advanced Gas Turbines, Paper GT2006-90970, Proceedings of ASME Turbo Expo 2006, May 8–11, Barcelona, Spain Google Scholar
  16. 16.
    Wu J et al. (2007) Advanced Gas Turbine Combustion System Development for High Hydrogen Fuels, GT 2007–28337, Proceedings of ASME Turbo Expo 2007, May 14–17, Montreal, Canada Google Scholar
  17. 17.
    Xia J, Gadde S, McQuiggan G (2006) Advanced F-Class Gas Turbines Can be a Reliable Choice for IGCC Applications. Electric Power Conference, Atlanta, Georgia Google Scholar
  18. 18.
    Robert M et al. (2006) Expanding Combustion Capabilities for Syngas Fuel Flexibility. POWER-GEN International, Orlando, Florida Google Scholar
  19. 19.
    Hashimoto T, Ota K, Fujii T (2007) Progress Update for Commercial Plants of Air Blown IGCC. Paper GT2007-28348, Proceedings of GT2007 ASME Turbo Expo 2007, May 14–17, Montreal, CanadaGoogle Scholar
  20. 20.
    Battista RA, Feitelberg AS, Lacey MA (1996) Design and Performance of Low Heating Value Fuel Gas Turbine Combustors, 96-GT-531. Proceedings of ASME Turbo Expo 1996, June 10–13, Birmingham, UK Google Scholar
  21. 21.
    Karg J (2009) IGCC power plants with and without CCS – market requirements, developments and projects. 9th European Gasification Conference, 23–25 March, Düsseldorf, Germany Google Scholar
  22. 22.
    Karg J (2016) Coal to Products – Is IGCC a Viable Option for Power or Poly-Generation. World Clean Coal Conference – Poland 2016, 20–21 April, Warsaw, Poland Google Scholar
  23. 23.
    Mabuchi Y (2015) Global Activities for Clean Coal Technology. September 9 Google Scholar
  24. 24.
    GE News Room (2015) GE schließt Akquisition von Alstom Power und Alstom Grid ab. November 2 Google Scholar
  25. 25.
    GEA32045e (2015) Powering the World 2016, GE gas power systems catalog. November Google Scholar
  26. 26.
    Theunissen G et al. (2013) Siemens Gas Turbine Enhanced Fuel Flexibility – The Business Advantage for India & Central Asia. Power-Gen India, May 6–8, Mumbai, India Google Scholar
  27. 27.
    Brown P et al. (2007) Siemens Gas Turbine H\({}_{2}\) Combustion Technology for Low Carbon IGCC. 2007 Gasification Technologies Conference, October 14–17, San Francisco, CaliforniaGoogle Scholar
  28. 28.
    Goldmeer J (2010) GE Syngas Turbines to Debut at IGCC Plant. Power Engineering, July 1 Google Scholar
  29. 29.
    Goldmeer J (2013) Gas Turbine Fuel Flexibility: An Enabler for Regional Power Generation. Power-Gen International, November 12–14, Orlando, Florida Google Scholar
  30. 30.
    Komori T et al. (2003) Design for F-Class Blast Furnace Gas Firing 300 MW Gas Turbine Combined Cycle Plant. Paper IGTC2003 Tokyo TS-103, Proceedings of International Gas Turbine Congress 2003, November 2–7, Tokyo, Japan Google Scholar
  31. 31.
    Dodo S et al. (2015) Dry Low-NO\({}_{x}\) Combustion Technology for Novel Clean Coal Power Generation Aiming at Realization of a Low Carbon Society. Mitsubishi Heavy Industries Technical Review Vol. 52 No. 2, JuneGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Andreas Heilos
    • 1
    Email author
  • Jaan Hellat
    • 2
  • Michael Huth
    • 1
  • Jürgen Karg
    • 3
  1. 1.Power and Gas DivisionSiemens AGMülheim/RuhrDeutschland
  2. 2.ZumikonSchweiz
  3. 3.Power and Gas DivisionSiemens AGErlangenDeutschland

Personalised recommendations