Linear Programming Algorithms

  • Bernhard Korte
  • Jens Vygen
Chapter
Part of the Algorithms and Combinatorics book series (AC, volume 21)

Abstract

Three types of algorithms for LINEAR PROGRAMMING had the most impact: the SIMPLEX ALGORITHM (see Section  3.2), interior point algorithms , and the ELLIPSOID METHOD .

References

General Literature

  1. Grötschel, M., Lovász, L., and Schrijver, A. [1988]: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin 1988Google Scholar
  2. Padberg, M. [1999]: Linear Optimization and Extensions. Second edition. Springer, Berlin 1999Google Scholar
  3. Schrijver, A. [1986]: Theory of Linear and Integer Programming. Wiley, Chichester 1986Google Scholar

Cited References

  1. Bland, R.G., Goldfarb, D., and Todd, M.J. [1981]: The ellipsoid method: a survey. Operations Research 29 (1981), 1039–1091Google Scholar
  2. Edmonds, J. [1967]: Systems of distinct representatives and linear algebra. Journal of Research of the National Bureau of Standards B 71 (1967), 241–245Google Scholar
  3. Frank, A., and Tardos, É. [1987]: An application of simultaneous Diophantine approximation in combinatorial optimization. Combinatorica 7 (1987), 49–65Google Scholar
  4. Gács, P., and Lovász, L. [1981]: Khachiyan’s algorithm for linear programming. Mathematical Programming Study 14 (1981), 61–68Google Scholar
  5. Grötschel, M., Lovász, L., and Schrijver, A. [1981]: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 (1981), 169–197Google Scholar
  6. Iudin, D.B., and Nemirovskii, A.S. [1976]: Informational complexity and effective methods of solution for convex extremal problems. Ekonomika i Matematicheskie Metody 12 (1976), 357–369 [in Russian]Google Scholar
  7. Karmarkar, N. [1984]: A new polynomial-time algorithm for linear programming. Combinatorica 4 (1984), 373–395Google Scholar
  8. Karp, R.M., and Papadimitriou, C.H. [1982]: On linear characterizations of combinatorial optimization problems. SIAM Journal on Computing 11 (1982), 620–632Google Scholar
  9. Khachiyan, L.G. [1979]: A polynomial algorithm in linear programming [in Russian]. Doklady Akademii Nauk SSSR 244 (1979) 1093–1096. English translation: Soviet Mathematics Doklady 20 (1979), 191–194Google Scholar
  10. Khintchine, A. [1956]: Kettenbrüche. Teubner, Leipzig 1956Google Scholar
  11. Lee, Y.T., and Sidford, A. [2014]: Path finding methods for linear programming. Proceedings of the 55th Annual IEEE Symposium on Foundations of Computer Science (2014), 424–433Google Scholar
  12. Padberg, M.W., and Rao, M.R. [1981]: The Russian method for linear programming III: Bounded integer programming. Research Report 81-39, New York University 1981Google Scholar
  13. Shor, N.Z. [1977]: Cut-off method with space extension in convex programming problems. Cybernetics 13 (1977), 94–96Google Scholar
  14. Steinitz, E. [1922]: Polyeder und Raumeinteilungen. Enzyklopädie der Mathematischen Wissenschaften, Band 3 (1922), 1–139Google Scholar
  15. Tardos, É. [1986]: A strongly polynomial algorithm to solve combinatorial linear programs. Operations Research 34 (1986), 250–256Google Scholar
  16. Vaidya, P.M. [1996]: A new algorithm for minimizing convex functions over convex sets. Mathematical Programming 73 (1996), 291–341Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Bernhard Korte
    • 1
  • Jens Vygen
    • 1
  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations