Generalizations of Matroids

  • Bernhard Korte
  • Jens Vygen
Part of the Algorithms and Combinatorics book series (AC, volume 21)


There are several interesting generalizations of matroids. We have already seen independence systems in Section  13.1, which arose from dropping the axiom (M3). In Section 14.1 we consider greedoids, arising by dropping (M2) instead. Moreover, certain polytopes related to matroids and to submodular functions, called polymatroids, lead to strong generalizations of important theorems; we shall discuss them in Section 14.2. In Sections 14.3 and 14.4 we consider two approaches to the problem of minimizing an arbitrary submodular function: one using the ELLIPSOID METHOD, and one with a combinatorial algorithm. For the important special case of symmetric submodular functions we mention a simpler algorithm in Section 14.5. Finally, in Section 14.6, we discuss the problem of maximizing a submodular function.


General Literature

  1. Bixby, R.E., and Cunningham, W.H. [1995]: Matroid optimization and algorithms. In: Handbook of Combinatorics; Vol. 1 (R.L. Graham, M. Grötschel, L. Lovász, eds.), Elsevier, Amsterdam, 1995Google Scholar
  2. Björner, A., and Ziegler, G.M. [1992]: Introduction to greedoids. In: Matroid Applications (N. White, ed.), Cambridge University Press, Cambridge 1992Google Scholar
  3. Frank, A. [2011]: Connections in Combinatorial Optimization. Oxford University Press, Oxford 2011Google Scholar
  4. Fujishige, S. [2005]: Submodular Functions and Optimization. Second Edition. Elsevier, Amsterdam 2005Google Scholar
  5. Iwata, S. [2008]: Submodular function minimization. Mathematical Programming B 112 (2008), 45–64Google Scholar
  6. Korte, B., Lovász, L., and Schrader, R. [1991]: Greedoids. Springer, Berlin 1991Google Scholar
  7. McCormick, S.T. [2004]: Submodular function minimization. In: Discrete Optimization (K. Aardal, G.L. Nemhauser, R. Weismantel, eds.), Elsevier, Amsterdam 2005Google Scholar
  8. Schrijver, A. [2003]: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin 2003, Chapters 44–49Google Scholar

Cited References

  1. Buchbinder, N., and Feldman, M. [2016]: Deterministic algorithms for submodular maximization problems. Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (2016), 392–403Google Scholar
  2. Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R. [2015]: A tight linear time (1/2)-approximation for unconstrained submodular maximization. SIAM Journal on Computing 44 (2015), 1384–1402Google Scholar
  3. Cunningham, W.H. [1984]: Testing membership in matroid polyhedra. Journal of Combinatorial Theory B 36 (1984), 161–188Google Scholar
  4. Edmonds, J. [1970]: Submodular functions, matroids and certain polyhedra. In: Combinatorial Structures and Their Applications; Proceedings of the Calgary International Conference on Combinatorial Structures and Their Applications 1969 (R. Guy, H. Hanani, N. Sauer, J. Schönheim, eds.), Gordon and Breach, New York 1970, pp. 69–87Google Scholar
  5. Edmonds, J. [1979]: Matroid intersection. In: Discrete Optimization I; Annals of Discrete Mathematics 4 (P.L. Hammer, E.L. Johnson, B.H. Korte, eds.), North-Holland, Amsterdam 1979, pp. 39–49Google Scholar
  6. Edmonds, J., and Giles, R. [1977]: A min-max relation for submodular functions on graphs. In: Studies in Integer Programming; Annals of Discrete Mathematics 1 (P.L. Hammer, E.L. Johnson, B.H. Korte, G.L. Nemhauser, eds.), North-Holland, Amsterdam 1977, pp. 185–204Google Scholar
  7. Feige, U., Mirrokni, V.S., and Vondrák, J. [2011]: Maximizing non-monotone submodular functions. SIAM Journal on Computing 40 (2011), 1133–1153Google Scholar
  8. Fleischer, L., and Iwata, S. [2000]: Improved algorithms for submodular function minimization and submodular flow. Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (2000), 107–116Google Scholar
  9. Frank, A. [1981]: A weighted matroid intersection algorithm. Journal of Algorithms 2 (1981), 328–336Google Scholar
  10. Frank, A. [1982]: An algorithm for submodular functions on graphs. In: Bonn Workshop on Combinatorial Optimization; Annals of Discrete Mathematics 16 (A. Bachem, M. Grötschel, B. Korte, eds.), North-Holland, Amsterdam 1982, pp. 97–120Google Scholar
  11. Fujishige, S. [1998]: Another simple proof of the validity of Nagamochi and Ibaraki’s min-cut algorithm and Queyranne’s extension to symmetric submodular function minimization. Journal of the Operations Research Society of Japan 41 (1998), 626–628Google Scholar
  12. Fujishige, S., Röck, H., and Zimmermann, U. [1989]: A strongly polynomial algorithm for minimum cost submodular flow problems. Mathematics of Operations Research 14 (1989), 60–69Google Scholar
  13. Grötschel, M., Lovász, L., and Schrijver, A. [1981]: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1 (1981), 169–197Google Scholar
  14. Grötschel, M., Lovász, L., and Schrijver, A. [1988]: Geometric Algorithms and Combinatorial Optimization. Springer, Berlin 1988Google Scholar
  15. Iwata, S. [2002]: A fully combinatorial algorithm for submodular function minimization. Journal of Combinatorial Theory B 84 (2002), 203–212Google Scholar
  16. Iwata, S. [2003]: A faster scaling algorithm for minimizing submodular functions. SIAM Journal on Computing 32 (2003), 833–840Google Scholar
  17. Iwata, S., Fleischer, L., and Fujishige, S. [2001]: A combinatorial, strongly polynomial-time algorithm for minimizing submodular functions. Journal of the ACM 48 (2001), 761–777Google Scholar
  18. Iwata, S., and Kobayashi, Y. [2017]: A weighted linear matroid parity algorithm. Proceedings of the 49th Annual ACM Symposium on Theory of Computing (2017), 264–276Google Scholar
  19. Jensen, P.M., and Korte, B. [1982]: Complexity of matroid property algorithms. SIAM Journal on Computing 11 (1982), 184–190Google Scholar
  20. Lee, Y.T., Sidford, A., and Wong, S.C. [2015]: A faster cutting plane method and its implications for combinatorial and convex optimization. Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science (2015), 1049–1065Google Scholar
  21. Lovász, L. [1980]: Matroid matching and some applications. Journal of Combinatorial Theory B 28 (1980), 208–236Google Scholar
  22. Lovász, L. [1981]: The matroid matching problem. In: Algebraic Methods in Graph Theory; Vol. II (L. Lovász, V.T. Sós, eds.), North-Holland, Amsterdam 1981, 495–517Google Scholar
  23. Lovász, L. [1983]: Submodular functions and convexity. In: Mathematical Programming: The State of the Art – Bonn 1982 (A. Bachem, M. Grötschel, B. Korte, eds.), Springer, Berlin 1983Google Scholar
  24. Nagamochi, H., and Ibaraki, T. [1998]: A note on minimizing submodular functions. Information Processing Letters 67 (1998), 239–244Google Scholar
  25. Orlin, J.B. [2007]: A faster strongly polynomial time algorithm for submodular function minimization. Mathematical Programming 118 (2009), 237–251Google Scholar
  26. Pap, G. [2017+]. Weighted linear matroid matching. Forthcoming. Abstract in: Oberwolfach Report 53 (2011), 3046–3049Google Scholar
  27. Queyranne, M. [1998]: Minimizing symmetric submodular functions. Mathematical Programming B 82 (1998), 3–12Google Scholar
  28. Rizzi, R. [2000]: On minimizing symmetric set functions. Combinatorica 20 (2000), 445–450Google Scholar
  29. Schrijver, A. [2000]: A combinatorial algorithm minimizing submodular functions in strongly polynomial time. Journal of Combinatorial Theory B 80 (2000), 346–355Google Scholar
  30. Vygen, J. [2003]: A note on Schrijver’s submodular function minimization algorithm. Journal of Combinatorial Theory B 88 (2003), 399–402Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Bernhard Korte
    • 1
  • Jens Vygen
    • 1
  1. 1.Research Institute for Discrete MathematicsUniversity of BonnBonnGermany

Personalised recommendations