Advertisement

Adaptronik pp 19-128 | Cite as

Funktionswerkstoffe

  • Johannes Michael Sinapius
  • Sebastian Geier
Chapter

Übersicht

Dieses Kapitel zeigt zunächst die Grundprinzipien der Funktionswerkstoffe, die energiewandelnde Eigenschaften haben, auf. Es leitet die grundlegenden Kenngrößen von Funktionswerkstoffen her. Die Vorstellung zweier inzwischen weit verbreiteter Klassen von Funktionswerkstoffen, elektromechanische Wandler und thermomechanische Wandler konkretisiert diese grundlegenden Eigenschaften. Das Kapitel stellt ausführlich die phänomenologischen Eigenschaften der Energiewandlung vor und präsentiert einfache Modelle für die komplexen Wandlungsvorgänge. Eine abschließende Übersicht gibt Auskunft über weitere, zum Teil in der Forschung befindliche Funktionswerkstoffe. Ein Beispiel aus der aktuellen Forschung zu Funktionswerkstoffen ergänzt diese Übersicht.

Literatur

  1. 1.
    T. M. Arruda, M. Heon, V. Presser, P. C. Hillesheim, S. Dai, Y. Gogotsi, S. V. Kalinin, N. Blake, In situ tracking of the nanoscale expansion of porous carbon electrodes. Energy Environ. Sci. 6, 225–231 (2013)CrossRefGoogle Scholar
  2. 2.
    J. N. Barisci, G. M. Spinks, G. G.Wallace, J. D. Madden, R. H. Baughman, Increased actuation rate of electromechanical carbon nanotube actuators using potential pulses with resistance compensation. Smart Mater. Struct. 12, 549–555 (2003)CrossRefGoogle Scholar
  3. 3.
    J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochemical characterization of single-walled carbon nanotube electrodes. J. Electrochem. Soc. 147(12), 4580–4583 (2000)CrossRefGoogle Scholar
  4. 4.
    J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions. Electrochim. Acta. 46, 509–517 (2000)CrossRefGoogle Scholar
  5. 5.
    J. N. Barisci, G. G. Wallace, R. H. Baughman, Electrochemical studies of singlewall carbon nanotubes in aqueous solutions. J. Electroanal. Chem. 488, 92–98 (2000)Google Scholar
  6. 6.
    R. Baughman, C. X. Cui, A. Zakhidov, Z. Iqbal, J. Barisci, Carbon nanotube actuators. Science 284, 1340–1344 (1999)CrossRefGoogle Scholar
  7. 7.
    A. Cao, P. L. Dickrell, W. G. Sawyer, M. N. Ghasemi-Nejhad, P. M. Ajayan, Supercompressible foam-like carbon nanotube films. Science 310, 1307 (2005)Google Scholar
  8. 8.
    F. Carpu, P. Chiarelle, D. Mazzoldi, A. De Rossi, Electromechanical characterisation of dielectric elastomer planar actuators: comparative evaluation of different electrode materials and different counterloads. Sensor Actuat. A-Phys. 107, 85–95 (2003)Google Scholar
  9. 9.
    I. Chopra, J. Sirohi, Smart Structures Theory (Cambridge University Press, 2014)Google Scholar
  10. 10.
    M. S. Dresselhaus, A. Jorio, O. Rabin, Carbon Nanotubes and Bismuth Nanowires. (CRC Press Taylor & Francis Group, Boca Raton, 2006)Google Scholar
  11. 11.
    H. Ebron, Z. Yang, D. J. Seyer, M. E. Kozlov, J. Oh, H. Xie, J. Razal, L. J. Hall, J. P. Ferraris, A. G. MacDiarmid, R. H. Baughman, Fuel-powered artificial muscles. Science 311, 1580–1583 (2006)CrossRefGoogle Scholar
  12. 12.
    T. Fett, D. Munz, G. Thun, Bending strength of a PZT ceramic under electric fields. J. Eur. Ceram. Soc. 23, 195–202 (2003)CrossRefGoogle Scholar
  13. 13.
    T. Fett, G. Munz, G. Thun, Tensile and bending strength of piezoelectric ceramics. J. Mater. Sci. Lett. 18, 1899–1902 (1999)Google Scholar
  14. 14.
    H. Funakubo (Hrsg.), Shape Memory Alloys (Taylor & Francis, 1987)Google Scholar
  15. 15.
    Y. N. Gartstein, A. A. Zakhidov, R. H. Baughman, Charge-induced anisotropic distorsion of semiconducting and metallic carbon nanotubes. Phys. Rev. Lett. 89(4), 045503–1 – 045503–4 (2002)Google Scholar
  16. 16.
    S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Carbon nanotubes array actuators. Smart. Mater. Struct. 22(9), 094003 (2013)CrossRefGoogle Scholar
  17. 17.
    S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Experimental Investigations of Actuators Based on Carbon Nanotube Architectures (Springer International Publishing AG, 2017), S. 67–95Google Scholar
  18. 18.
    S. Geier, T. Mahrholz, P. Wierach, M. Sinapius, Morphology- and ion size-induced actuation of carbon nanotube architectures. Int’l. J. Smart Nano Mater. 9(2), 111–134 (2018)CrossRefGoogle Scholar
  19. 19.
    H. R. Gerischer, D. McIntyre, W. Storck, Density of the electronic states of graphite: derivation from differential capacitance measurements. J. Phys. Chem. 91, 1930–1935 (1987)CrossRefGoogle Scholar
  20. 20.
    S. Ghosh, V. Gadagkar, A. K. Sood, Strains induced in carbon nanotubes due to the presents of ions: ab initio restricted Hatree-Fock calculations. Chem. Rev. Lett. 406, 10–14 (2005)CrossRefGoogle Scholar
  21. 21.
    J. Guyonnet, Ferroelectric Domain Walls (Dissertation, University of Geneva, Geneva, Switzerland, 2014)Google Scholar
  22. 22.
    M. H. Haque, I. Kolaric, U. Vohrer, T. Wallmersperger, M. D’Ottavio, B. Kroplin, Multiwalled carbon-nanotubes-sheet actuators: theoretical and experimental investigations. Proc. SPIE 5759, Smart Structures and Materials 2005: Electroactive Polymer Actuators and Devices (EAPAD) (2005)Google Scholar
  23. 23.
    G. Heckmann, Gittertheorie der festen Körper. Ergebnisse der exakten Naturwissenschaften, 4, 100–153 (1925)Google Scholar
  24. 24.
    E. Hernández, C. Goze, P. Bernier, A. Rubio, Elastic properties of C and BxCyNz composite nanotubes. Phys. Rev. Lett. 80, 4502 (1998)CrossRefGoogle Scholar
  25. 25.
    A. Hérold, Crystallo-Chemistry of Carbon Intercalation Compounds, Bd. 6 (D. Reidel Publishing Company, 1979)Google Scholar
  26. 26.
    J. Hesselbach, Adaptronics and Smart Structures, Kapitel 6.4 Shape Memory Alloys (Springer, 1999), S. 143–160Google Scholar
  27. 27.
    M. Hughes, G. M. Spinks, Multiwalled carbon-nanotube actuators. Adv. Mater. 17(4), 443–446 (2005)CrossRefGoogle Scholar
  28. 28.
    S. Iijima, Helical microtubules of graphitic Carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  29. 29.
    T. Ikeda, Fundamentals of Piezoelectricity (Oxford University Press, 1990)Google Scholar
  30. 30.
    H. Janocha, Unkonventionelle Aktoren (Oldenbourg Verlag, 2013)Google Scholar
  31. 31.
    M. Kaack, Elastische Eigenschaften von NiTi-Formgedächtnis-Legierungen (Dissertation, Ruhr-Universität Bochum, 2002)Google Scholar
  32. 32.
    L. Kavan, L. Dunsch, Electrochemistry of Carbon Nanotubes (Springer-Verlag GmbH, Heidelberg, 2008)Google Scholar
  33. 33.
    H. Kawai, The piezoelectricity of poly (vinylidene fluoride). Jpn. J. Appl. Phys. 8(7), 975 (1969)CrossRefGoogle Scholar
  34. 34.
    C. Ke, H. D. Espinosa, Numerical analysis of nanotube-based NEMS devices. Part I: Electrostatic charge distribution on multiwalled nanotubes. J. Appl. Mech. 89, 721–725 (2005)CrossRefGoogle Scholar
  35. 35.
    H.-E. Kiil, M. Benslimane, Scalable industrial manufacturing of DEAP. Proc. of SPIE Vol. 7287: Electroactive Polymer Actuators and Devices (EAPAD) (2009)Google Scholar
  36. 36.
    U. Koslido, M. Omastová, M. Micusík, G. Ćirić-Marjanović, H. Randriamahazaka, T. Wallmersperger, A. Aabloo, I. Kolaric, T. Bauernhansl, Nanocarbon based ionic actuators - a review. Smart Mater. Struct. 22, 104022 (2013)CrossRefGoogle Scholar
  37. 37.
    U. Koslido, D. G. Weis, K. Hying, M. H. Haque, I. Kolaric, Development of Measurement Set-up for Electromechanical Analysis of Bucky Paper Actuators. J Nanotechno. Online 3, 1–11 (2007)Google Scholar
  38. 38.
    A. Krishnan, E. Dujardin, T. Ebbesen, P. N. Yianilos, M. M. J. Treacy, Young’s modulus of single wall carbon nanotubes. Phys. Rev. B 58, 14013 (1998)CrossRefGoogle Scholar
  39. 39.
    M. Kristen. Untersuchung zur elektrischen Ansteuerung von Formgedächtnisantrieben in der Handhabungstechnik (Dissertation, Technische Universität Carolo-Wilhelmina zu Braunschweig, 1994)Google Scholar
  40. 40.
    A. Krüger. Neue Kohlenstoffmaterialien, Eine Einführung (Springer Fachmedien GmbH, Wiesbaden, 2007)Google Scholar
  41. 41.
    S. Langbein, A. Czechowicz. Konstruktionspraxis Formgedächtnistechnik: Potentiale Auslegung Beispiele (Springer-Vieweg, 2013)Google Scholar
  42. 42.
    A. Lendlein (Hrsg.), Shape-Memory Polymers. Nr. 226 in Advances in Polymer Science (Springer, 2010)Google Scholar
  43. 43.
    A. Lendlein, S. Kelch, Shape memory polymers. Angewandte Chemie, Int’l Edition 41(12), 2034–2057 (2002)CrossRefGoogle Scholar
  44. 44.
    C. Li, E. Thostenson, T. W. Chou, Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 68, 1227–1249 (2008)CrossRefGoogle Scholar
  45. 45.
    C. Y. Li, T. W. Chou, Electrostatic charge distribution on single-walled carbon nanotubes. Appl. Phys. Lett. 89, 063103 (2006)CrossRefGoogle Scholar
  46. 46.
    B. Lukić, J. Seo, E. Couteau, K. Lee, S. Gradečak, R. Berkecz, K. Hernadi, S. Delpeux, T. Cacciaguerra, F. Béguin, A. Fonseca, B. Nagy, G. Csányi, A. Kis, A. Kulik, L. Foró. Elastic modulus of multi-walled carbon nanotubes produced by catalytic chemical vapor deposition. Appl. Phys. A 80, 695 (2005)CrossRefGoogle Scholar
  47. 47.
    P. Martinsa, A. Lopesa, S. Lanceros-Mendeza, Electroactive phases of poly(vinylidene fluoride): Determination, processing and applications. Prog. Polym. Sci. 39, 683706 (2014)CrossRefGoogle Scholar
  48. 48.
    T. Massalski, H. Okamoto, P. Subramanian, L. Kacprzac, Binary Alloy Phase, Bd. 3, 2. Aufl. (ASM International, 1990)Google Scholar
  49. 49.
    G. Mechrez, R. Y. Suckeveriene, R. Tchoudakov, A. Kigly, E. Segal, M. Narkis, Structure and properties of multi-walled carbon nanotube porous sheets with enhanced elongation. J. Mater. Sci. 47, 6131–6140 (2012)CrossRefGoogle Scholar
  50. 50.
    J. Melcher, Adaptive Impedanzregelung an strukturmechanischen Systemen (Dissertation, Otto-von-Guericke-Universität Magdeburg, 2001)Google Scholar
  51. 51.
    A. Minett, J. Fraysse, G. Gang, G.-T. Kim, S. Roth, Nanotube actuators for nanomechanics. Curr. Appl. Phys. 2, 61–64 (2002)CrossRefGoogle Scholar
  52. 52.
    T. Mirfakhrai. Carbon Nanotube Yarn Actuators (Dissertation an der Universität von British Columbia, 2009)Google Scholar
  53. 53.
    M. B. Nardelli, B. I. Yakobson, J. Bernhole, Mechanism of strain release in carbon nanotubes. Phys. Rev. B 57, R4277 (1998)CrossRefGoogle Scholar
  54. 54.
    K. H. Näser, D. Lempe, O. Regen, Physikalische Chemie für Techniker und Ingenieure, Bd. 19 (Deutscher Verlag für Grundstoffindustrie GmbH, 1990)Google Scholar
  55. 55.
    R. E. Newnham, Properties of Materials (Oxford University Press, 2005)Google Scholar
  56. 56.
    E. R. Nightingale, Phenomenological theory of ion solvation. Effective Radii of Hydrated Ions. J. Phys. Chem. 63(9), 1381–1387 (1959)CrossRefGoogle Scholar
  57. 57.
    D. E. Nixon, G. S. Parry, The expansion of the carbon-carbon bond length in potassium graphites. J. Solid State Phys. 2(2), 1732–1741 (1969)CrossRefGoogle Scholar
  58. 58.
    A. Oberlin, M. Endo, Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 32, 335–349 (1976)CrossRefGoogle Scholar
  59. 59.
    A. Ölander, The Crystal Structure of AuCd. Zeitschrift für Kristallographie 83, 145–148 (1932)Google Scholar
  60. 60.
    P. Pertsch, Das Gro.signalverhalten elektromechanischer Festkörperaktoren (Dissertation, Ilmenau, 2003)Google Scholar
  61. 61.
    L. Pietronero, S. Strässler, Bond-length change as a tool to determine charge transfer and electron-phonon coupling in graphite intercalation compounds. Phys. Rev. Lett. 47(8), 593–596 (1981)CrossRefGoogle Scholar
  62. 62.
    P. Poncharal, Z. Wang, D. Ugarte, W. A. de Heer, Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283, 1513 (1999)CrossRefGoogle Scholar
  63. 63.
    L. V. Radushkevich, V. M. Lukyanovich, Clear images of 50 nanometer diameter tubes made of carbon. Sov. J. Phys. Chem. 62, 88–95 (1952)Google Scholar
  64. 64.
    S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006)Google Scholar
  65. 65.
    J. Riemenschneider, H. Temmen, H. P. Monner, CNT based actuators: Experimental and theoretical investigation of the in-plain strain generation. J. Nanosci. Nanotech. 7(10), 3359–3364 (2007)CrossRefGoogle Scholar
  66. 66.
    J. Riemenschneider, Charakterisierung und Modellierung von Kohlenstoff-Nanoröhren basierten Aktuatoren (Dissertation an der Otto-von-Guericke-Universitt Magdeburg, 2008)Google Scholar
  67. 67.
    R. Saito, M. Fujita, G. Dresselhaus, M. S. Dresselhaus, Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60(18), 2204–2206 (1992)CrossRefGoogle Scholar
  68. 68.
    F. Schiedeck, Entwicklung eines Modells für Formgedächtnisaktoren im geregelten dynamischen Betrieb (Dissertation, Leibniz Universität Hannover, 2009)Google Scholar
  69. 69.
    K. Seifert, Lead-Free Piezoelectric Ceramics (Dissertation, TU Darmstadt, 2010)Google Scholar
  70. 70.
    T. Shrout, S. Zhang, Lead-free pieroelectric ceramics. J. Electroceram. 19, 111–124 (2007)Google Scholar
  71. 71.
    G. Spinks, G. G. Wallace, L. S. Fifield, L. R. Dalton, A. Mazzoldi, D. De Rossi, I. I. Khayrullin, R. H. Baughman, Pneumatic carbon nanotube actuators. Adv. Mater. 14(23), 1728–1732 (2002)CrossRefGoogle Scholar
  72. 72.
    G. M. Spinks, G. G. Wallace, R. H. Baughman, L. Dai, Carbon Nanotube Actuators: Synthesis, Properties and Performance (SPIE Press, 2008)Google Scholar
  73. 73.
    G. Sun, J. Kürti, M. Kertesz, R. H. Baughman, Dimensional changes as a function of charge injection in single-walled carbon nanotubes. J. Am. Chem. Soc. 124, 15076–15080 (2002)CrossRefGoogle Scholar
  74. 74.
    D. Suppiger, S. Busato, S. P. Ermanni, M. Motta, A. Windle, Electromechanical actuation of marcoscopic carbon nanotube structures: mats and sligned ribbons. Phys. Chem. Chem. Phys. 11, 5180–5185 (2009)CrossRefGoogle Scholar
  75. 75.
    K. Tanaka, Thermomechanical sketch of shape memory effect: one-dimensional tensile behavior. Res Mechanica: Int. J. Struct. Mech. Mater. Sci. 18(3), 251–263 (1986)Google Scholar
  76. 76.
    D. Tománek, A. Jorio, M. S. Dresselhaus, G. Dresselhaus, Introduction to the Important and Exciting Aspects of Carbon-Nanotube Science and Technology, Bd. 111 (Springer-Verlag GmbH, 2008)Google Scholar
  77. 77.
    S.-Y. Tsai. Experimental Study and Modelling of Nanotube Buckypaper Composite Actuator for Morphing Structure Applications (Dissertation an der Florida State University, 2010)Google Scholar
  78. 78.
    V. Vainio, T. I. W. Schnoor, S. K. Vayalil, K. Schulte, M. Müller, E. T. Lilleodden, Orientation distribution of vertically aligned multiwalled carbon nanotubes. J. Phys. Chem. C. 118, 9507–9513 (2014)CrossRefGoogle Scholar
  79. 79.
    U. Vohrer, N. Zschoerper, Kohlenstoff-Nanoröhren - Phönix aus der Asche, Carbon Nanotubes - A Material rising like a Phoenix. Vakuum in Forschung und Praxis, 19(2), 22–30 (2007)CrossRefGoogle Scholar
  80. 80.
    D. A.Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K. A. Smith, R. E. Smalley, Elastic strain of freely suspended single-wall carbon nanotube ropes. Appl. Phys. Lett. 74 (1999)CrossRefGoogle Scholar
  81. 81.
    X. Wang, Q. Li, J. Xie, Z. Jin, J.Wang, Y. Li, K. Jiang, S. Fan, Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Smart. Mater. Struct. 22(9), 094003 (2013)CrossRefGoogle Scholar
  82. 82.
    B. Q. Wei, R. Vajtai, P. M. Ajayan, Reliability and current carrying capacity of carbon nanotubes. Appl. Phys. Lett. 79, 1172–1174 (2001)CrossRefGoogle Scholar
  83. 83.
    P. G. Whitten, G. M. Spinks, G. G. Wallace, Mechanical properties of carbon nanotube paper in ionic liquid and aqueous electrolytes. Carbon 43, 1891–1896 (2005)CrossRefGoogle Scholar
  84. 84.
    T. Yamamoto, K. Watanabe, E. R. Hernández, Mechanical Properties, Thermal Stability and Heat Transport in Carbon Nanotubes, Bd. 111 (Springer-Verlag GmbH, 2008)Google Scholar
  85. 85.
    M.-F. Yu, B. S. Files, S. Arepalli, R. S. Ruoff, Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 84, 5552–5555 (2000)CrossRefGoogle Scholar
  86. 86.
    M.-F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kellyand, R. F. Ruoff, Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287, 637–640 (2000)CrossRefGoogle Scholar
  87. 87.
    Y.-H. Yun, A. Miskin, P. Kang, S. Jain, S. Narasimhadevara, D. Hurd, V. Shinde, M. J. Schulz, V. Shanov, P. He, F. J. Boerio, D. Shi, S. Subramanian, Carbon nanofiber hybrid actuators: Part II–Solid Electrolyte-based. J. Intel. Mat. Syst. Str. 17, 191–198 (2006)Google Scholar
  88. 88.
    Y. H. Yun, V. Shanov, Y. Tu, M. J. Schulz, S. Yarmolenko, S. Neralla, J. Sankar, S. Subramaniam, A multi-wall carbon nanotube tower electrochemical actuator. Nano Lett. 6(4), 689–693 (2006)CrossRefGoogle Scholar
  89. 89.
    Q. Z. Zhao, M. B. Nardelli, J. Bernhole, Ultimate strengh of carbon nanotubes: a theoretical study. Phys. Rev. B 65, 144105 (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Technische Universität Carolo Wilhelmina zu BraunschweigBraunschweigDeutschland
  2. 2.Institut für Faserverbundleichtbau und Adaptronik, Deutsches Zentrum für Luft- und Raumfahrt e.V.BraunschweigDeutschland

Personalised recommendations