Advertisement

Molekularbiologische Verfahren

  • Reinhard Matissek
  • Markus Fischer
  • Gabriele Steiner
Chapter
Part of the Springer-Lehrbuch book series (SLB)

Zusammenfassung

Seit den 1970er Jahren wurden eine Vielzahl molekularbiologischer Methoden (engl. molecular biological methods) entwickelt, die Verwendung finden in verschiedenen Fachrichtungen, wie z. B. der Medizin, der Forensik, der Biotechnologie aber auch der Lebensmittelanalytik. Grundsätzlich können molekularbiologische Methoden auf alle Lebensmittelbestandteile angewendet werden, die Nucleinsäuren enthalten. Die Vorteile molekularbiologischer Methoden liegen in geringen Nachweisgrenzen und in hohen Spezifitäten. Typischerweise beschränkt sich die Lebensmittelanalytik auf das Arbeiten mit DNA, sie stellt für einige relevante Fragestellungen einen besonders geeigneten Analyten dar.

Weiterführende Literatur

  1. [1]
    Germini A et al. (2004) Development of a seven-target multiplex PCR for the simultaneous detection of transgenic soybean and maize in feeds and foods. J Agric Food Chem 52:3275–3280CrossRefPubMedGoogle Scholar
  2. [2]
    Klein G (2003) Anwendung molekularbiologischer Methoden in der Lebensmittelmikrobiologie am Beispiel probiotisch genutzter Laktobazillen. Berl Munch Tierarztl Wochenschr 116(11–12):510–516PubMedGoogle Scholar
  3. [3]
    Näther G, Toutounian K, Ellerbroek L (2007) Genotypisierung von Campylobacter spp, mittels AFLP in wiederkehrend Campylobacter-positiven Masthähnchenherden. Archiv für Lebensmittelhygiene 589(10):175–179Google Scholar
  4. [4]
    Waiblinger HU et al. (2005) Die Untersuchung von transgenem Rapspollen in Honigen mittels Real-time-PCR. Deut Lebensm Rundsch 101(12):543–549Google Scholar
  5. [5]
    Brackenridge JC, Bachelard HS (1969) Extraction and some properties of membrane-bound proteins from ox cerebral cortex microsomes. Int J Protein Res 1(3):157–168PubMedGoogle Scholar
  6. [6]
    Dias R et al (2002) DNA-lipid systems. A physical chemistry study. Braz J Med Biol Res 35:509–522CrossRefPubMedGoogle Scholar
  7. [7]
    Mao Y et al (1994) DNA binding to crystalline silica characterized by Fourier-transform infrared spectroscopy. Environ Health Perspect 102(Suppl 10):165–171Google Scholar
  8. [8]
    ASU L15.05-1Google Scholar
  9. [9]
    Lottspeich F, Zorbas H (1998) Bioanalytik. Spektrum Akademischer Verlag, Heidelberg BerlinGoogle Scholar
  10. [10]
    Müller HJ (2001) PCR – Polymerase-Kettenreaktion, Spektrum Akademischer Verlag, Heidelberg BerlinGoogle Scholar
  11. [11]
    Fischer M, Haase I (2006) PCR in der Lebensmittelanalytik – Bedeutung und Anwendungsbeispiele. GIT Labor-Fachzeitschrift 03:206–209, GIT Verlag, DarmstadtGoogle Scholar
  12. [12]
    Roux KH (1995) Optimization and troubleshooting in PCR. PCR Methods Appl 4:185–194CrossRefGoogle Scholar
  13. [13]
    Allmann M, Candrian U, Hofelein C, Liithy J (1993) Polymerase chain reaction (PCR): A possible alternative to immunochemical methods assuring safety and quality of food. Z Lebensm Unters Forsch 196:248–251CrossRefPubMedGoogle Scholar
  14. [14]
    Garciacanas V, Cifuentes A, Gonzalez R (2004) Detection of genetically modified organisms in food by DNA amplification techniques. Crit Rev Food Sci Nutr 44:425–436CrossRefGoogle Scholar
  15. [15]
    Malorny B, Tassios PT, Rådström P, Cook N, Wagner M, Hoorfar J (2003) Standardization of diagnostic PCR for the detection of foodborne pathogens. Int J Food Microbiol 83(1):39–48CrossRefPubMedGoogle Scholar
  16. [16]
    ENGL European Network of GMO Laboratories (2008) Definition of Minimum Performance Requirements for Analytical Methods of GMO Testing. Technical Report by the Joint Research Centre, European CommissionGoogle Scholar
  17. [17]
    Pfaffl MW (2004) Quantification strategies in real-time PCR. In: S. A. Bustin (Hrsg) A-Z of quantitative PCR Kapitel 3. International University Line (IUL), La Jolla, CA, USA, S 87–112Google Scholar
  18. [18]
    Pfaffl MW (2001) A new mathematic model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29(9):e45CrossRefPubMedPubMedCentralGoogle Scholar
  19. [19]
    Maurer J (Hrsg) (2006) PCR methods in foods. Springer Verlag, New YorkGoogle Scholar
  20. [20]
    Bustin SA et al (2009) The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622CrossRefPubMedGoogle Scholar
  21. [21]
    Mayer F et al (2012) Use of polymorphisms in the γ-gliadin gene of spelt and wheat as a tool for authenticity control. J Agric Food Chem 60(6):1350–1357CrossRefPubMedGoogle Scholar
  22. [22]
    Gill P, Ghaemi A (2008) Nucleic acid isothermal amplification technologies – A review. Nucleos Nucleot Nucl 27:224–243CrossRefGoogle Scholar
  23. [23]
    Kim J, Easley CJ (2011) Isothermal DNA amplification in bioanalysis: strategies and applications. Bioanalysis 3:227–239CrossRefPubMedGoogle Scholar
  24. [24]
    Li J, Macdonald J (2015) Advances in isothermal amplification: novel strategies inspired by biological processes. Biosens Bioelectron 64:196–211CrossRefPubMedGoogle Scholar
  25. [25]
    Madesis P, Ganopoulos I, Sakaridis I, Argiriou A, Tsaftaris A (2014) Advances of DNA-based methods for tracing the botanical origin of food products Food Res Int 60:163–172CrossRefGoogle Scholar
  26. [26]
    Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, Hase T (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28(12):E63Google Scholar
  27. [27]
    Nagamine K, Hase T, Notomi T (2002) Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol Cell Probe 16:223–229CrossRefGoogle Scholar
  28. [28]
    Vaagt F, Haase I, Fischer M (2013) Loop-Mediated Isothermal Amplification (LAMP)-based method for rapid mushroom species identification. J Agri Food Chem 61:1833–1840CrossRefGoogle Scholar
  29. [29]
    Focke F, Haase I, Fischer M (2013) Loop-Mediated Isothermal Amplification (LAMP): Methods for plant species identification. Food J Agri Food Chem 61:2943–2949CrossRefGoogle Scholar
  30. [30]
    Metzker ML (2010) Applications of next-generation sequencing sequencing technologies – the next generation. Nat Rev Genet 11:31–46CrossRefPubMedGoogle Scholar
  31. [31]
    Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet 17:333–351CrossRefPubMedPubMedCentralGoogle Scholar
  32. [32]
    Liu L, Li YH, Li SL, Hu N, He YM, Pong R, Lin DN, Lu LH, Law M (2012) Comparison of next-generation sequencing systems. J Biomed BiotechnolGoogle Scholar
  33. [33]
    Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24:133–141CrossRefPubMedGoogle Scholar
  34. [34]
    Ku CS, Roukos DH (2013) From next-generation sequencing to nanopore sequencing technology: paving the way to personalized genomic medicine. Expert Rev Med Devic 10:1–6CrossRefGoogle Scholar
  35. [35]
    Kane N, Sveinsson S, Dempewolf H, Yang JY, Zhang D, Engels JM, Cronk Q (2012) Ultra-barcoding in cacao (Theobroma spp.; Malvaceae) using whole chloroplast genomes and nuclear ribosomal DNA. Am J Bot 99:320–329CrossRefPubMedGoogle Scholar
  36. [36]
    Fischer C, Kallinich C, Klockmann S, Schrader J, Fischer M (2016) Automatized enrichment of sulfanilamide in milk matrices by utilization of aptamer linked magnetic particles. J Agric Food Chem 64:9246CrossRefPubMedGoogle Scholar
  37. [37]
    Hünniger T, Felbinger C, Wessels H, Mast S, Hoffmann A, Schefer A, Märtelbauer E, Paschke-Kratzin A, Fischer M (2015) Food targeting: A real-time PCR assay targeting 16S rDNA for direct quantification of Alicyclobacillus spp. spores after aptamer-based enrichment. J Agric Food Chem 63:4291CrossRefPubMedGoogle Scholar
  38. [38]
    Vaagt F, Haase I, Fischer M (2013) Loop-mediated isothermal Amplification (LAMP) based method for rapid mushroom species identification. J Agric Food Chem 61:1833CrossRefPubMedGoogle Scholar
  39. [39]
    Wu J, Kodzius R, Cao W, Wen W, Extraction, amplification and detection of DNA in microfluidic chip-based assays (2013). Mircochimica Acta 181:1611CrossRefGoogle Scholar
  40. [40]
    Sajid M, Kawde A, Muhammad D (2015) Designs, formats and applications of lateral flow assay: a literature review. J Saudi Chem Soc 19:689CrossRefGoogle Scholar
  41. [41]
    Mark S, Haeberle S, Roth G, Von Stetten F, Zengerle R (2010) Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications. Chem Soc Rev 39:1153CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Reinhard Matissek
    • 1
  • Markus Fischer
    • 2
  • Gabriele Steiner
    • 3
  1. 1.Lebensmittelchemisches Institut (LCI) desBundesverbandes der Deutschen Süßwarenindustrie e.V.KölnDeutschland
  2. 2.Hamburg School of Food Science – Institut für LebensmittelchemieUniversität HamburgHamburgDeutschland
  3. 3.StuttgartDeutschland

Personalised recommendations