Advertisement

Immunologie der fetomaternalen Grenze

  • Udo R. MarkertEmail author
  • Johanna Seitz
  • Theresa Hofmann
  • Juliane Götze
  • Sebastian Schamberger
Chapter

Zusammenfassung

Die Schwangerschaft stellt die einzigartige Situation dar, in der zwei allogene Organismen, Mutter und Fetus, ohne Abstoßungsreaktionen in Symbiose zusammenleben. Die Plazenta bildet dabei den größten Teil der Grenzfläche und ist somit von besonderer immunologischer Bedeutung. Verschiedenste plazentare Faktoren, großenteils von Trophoblastzellen produziert und sezerniert, induzieren eine weitgehend spezifische Toleranz gegenüber dem Embryo oder Fetus, ohne dabei die eigentlichen Funktionen des Immunsystems grundlegend zu verändern. Störungen dieser Toleranz können zu allen Zeitpunkten den Schwangerschaftsverlauf beeinträchtigen oder eine Schwangerschaft gar nicht erst zustande kommen lassen. Immunologische Parameter haben daher das Potenzial, als diagnostische Marker und für neue Behandlungsstrategien genutzt zu werden. Das vorliegende Kapitel soll einen groben Eindruck in die komplexe Thematik vermitteln.

Literatur

  1. Aldo PB et al (2014) Trophoblast induces monocyte differentiation into CD14+/CD16+ macrophages. Am J Reprod Immunol 72(3):270–284CrossRefGoogle Scholar
  2. Aluvihare VR, Kallikourdis M, Betz AG (2005) Tolerance, suppression and the fetal allograft. J Mol Med (Berl) 83(2):88–96CrossRefGoogle Scholar
  3. Arck PC, Hecher K (2013) Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med 19(5):548–556CrossRefGoogle Scholar
  4. Arck P et al (2007) Progesterone during pregnancy: endocrine-immune cross talk in mammalian species and the role of stress. Am J Reprod Immunol 58(3):268–279CrossRefGoogle Scholar
  5. Barakonyi A et al (2002) Recognition of nonclassical HLA class I antigens by gamma delta T cells during pregnancy. J Immunol 168(6):2683–2688CrossRefGoogle Scholar
  6. Blaschitz A et al (2011) Vascular endothelial expression of indoleamine 2,3-dioxygenase 1 forms a positive gradient towards the feto-maternal interface. PLoS One 6(7):e21774CrossRefGoogle Scholar
  7. Bulmer JN, Williams PJ, Lash GE (2010) Immune cells in the placental bed. Int J Dev Biol 54(2–3):281–294CrossRefGoogle Scholar
  8. Caligiuri MA (2008) Human natural killer cells. Blood 112(3):461–469CrossRefGoogle Scholar
  9. Carlino C et al (2012) Chemerin regulates NK cell accumulation and endothelial cell morphogenesis in the decidua during early pregnancy. J Clin Endocrinol Metab 97(10):3603–3612CrossRefGoogle Scholar
  10. Chamley LW et al (2014) Review: where is the maternofetal interface? Placenta 35:74–80CrossRefGoogle Scholar
  11. Chaouat G (2013) Inflammation, NK cells and implantation: friend and foe (the good, the bad and the ugly?): replacing placental viviparity in an evolutionary perspective. J Reprod Immunol 97(1):2–13CrossRefGoogle Scholar
  12. Chen W et al (2008) The indoleamine 2,3-dioxygenase pathway is essential for human plasmacytoid dendritic cell-induced adaptive T regulatory cell generation. J Immunol 181(8):5396–5404CrossRefGoogle Scholar
  13. Colucci F, Caligiuri MA, Di Santo JP (2003) What does it take to make a natural killer? Nat Rev Immunol 3(5):413–425CrossRefGoogle Scholar
  14. Crncic TB et al (2005) Perforin and Fas/FasL cytolytic pathways at the maternal-fetal interface. Am J Reprod Immunol 54(5):241–248CrossRefGoogle Scholar
  15. Delorme-Axford E et al (2013) Human placental trophoblasts confer viral resistance to recipient cells. Proc Natl Acad Sci U S A 110(29):12048–12053CrossRefGoogle Scholar
  16. Ermisch C, Markert UR (2011) PIBF – Progesterone-Induced Blocking Factor. Z Geburtshilfe Neonatol 215(3):93–97CrossRefGoogle Scholar
  17. Faas MM, Vos P de (2017) Uterine NK cells and macrophages in pregnancy. Placenta 56:44–52CrossRefGoogle Scholar
  18. Filippini A et al (2001) Control and impairment of immune privilege in the testis and in semen. Hum Reprod Update 7(5):444–449CrossRefGoogle Scholar
  19. Foster BP et al (2016) Extracellular vesicles in blood, milk and body fluids of the female and male urogenital tract and with special regard to reproduction. Crit Rev Clin Lab Sci 53(6):379–395CrossRefGoogle Scholar
  20. Fournier T (2016) Human chorionic gonadotropin: different glycoforms and biological activity depending on its source of production. Ann Endocrinol (Paris) 77(2):75–81CrossRefGoogle Scholar
  21. Gohner C et al (2015) A New Enzyme-linked Sorbent Assay (ELSA) to quantify syncytiotrophoblast extracellular vesicles in biological fluids. Am J Reprod Immunol 73(6):582–588CrossRefGoogle Scholar
  22. Gordon S (2003) Alternative activation of macrophages. Nat Rev Immunol 3(1):23–35CrossRefGoogle Scholar
  23. Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5(12):953–964CrossRefGoogle Scholar
  24. Guerin LR, Prins JR, Robertson SA (2009) Regulatory T-cells and immune tolerance in pregnancy: a new target for infertility treatment? Hum Reprod Update 15(5):517–535CrossRefGoogle Scholar
  25. Gustafsson C et al (2008) Gene expression profiling of human decidual macrophages: evidence for immunosuppressive phenotype. PLoS One 3(4):e2078CrossRefGoogle Scholar
  26. Heikkinen J et al (2003) Phenotypic characterization of human decidual macrophages. Clin Exp Immunol 131(3):498–505CrossRefGoogle Scholar
  27. Jabrane-Ferrat N, Siewiera J (2014) The up side of decidual natural killer cells: new developments in immunology of pregnancy. Immunology 141(4):490–497CrossRefGoogle Scholar
  28. Jones LA et al (2010) Differential modulation of TLR3- and TLR4-mediated dendritic cell maturation and function by progesterone. J Immunol 185(8):4525–4534CrossRefGoogle Scholar
  29. Kammerer U, Wolff M von, Markert UR (2004) Immunology of human endometrium. Immunobiology 209(7):569–574CrossRefGoogle Scholar
  30. Koc S et al (2003) Enhancement of immunogenicity of Jeg3 cells by ectopic expression of HLA-A*0201 and CD80. Am J Reprod Immunol 50(3):243–253CrossRefGoogle Scholar
  31. Kopcow HD et al (2008) T cell apoptosis at the maternal-fetal interface in early human pregnancy, involvement of galectin-1. Proc Natl Acad Sci U S A 105(47):18472–18477CrossRefGoogle Scholar
  32. Makrigiannakis A et al (2008) Fetomaternal immunotolerance. Am J Reprod Immunol 60(6):482–496CrossRefGoogle Scholar
  33. Martinez FO et al (2006) Transcriptional profiling of the human monocyte-to-macrophage differentiation and polarization: new molecules and patterns of gene expression. J Immunol 177(10):7303–7311CrossRefGoogle Scholar
  34. McIntire RH, Ganacias KG, Hunt JS (2008) Programming of human monocytes by the uteroplacental environment. Reprod Sci 15(5):437–447CrossRefGoogle Scholar
  35. Medawar PB (1953) Some immunological and endocrinological problems raised by the evolution of viviparity in vertebrates. Symp Soc Exp Biol 7:320–338Google Scholar
  36. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4(10):762–774CrossRefGoogle Scholar
  37. Mincheva-Nilsson L (2003) Pregnancy and gamma/delta T cells: taking on the hard questions. Reprod Biol Endocrinol 1:120CrossRefGoogle Scholar
  38. Moore KL, Persaud TVN (2007) Embryologie: Entwicklungsstadien, Frühentwicklung, Organogenese, Klinik, Bd 5. Elsevier & Urban & Fischer, MünchenGoogle Scholar
  39. Mor G (2008) Inflammation and pregnancy: the role of toll-like receptors in trophoblast-immune interaction. Ann N Y Acad Sci 1127:121–128CrossRefGoogle Scholar
  40. Mor G, Abrahams VM (2003) Potential role of macrophages as immunoregulators of pregnancy. Reprod Biol Endocrinol 1:119CrossRefGoogle Scholar
  41. Mor G, Cardenas I (2010) The immune system in pregnancy: a unique complexity. Am J Reprod Immunol 63(6):425–433CrossRefGoogle Scholar
  42. Morales-Prieto DM et al (2014) Elsevier trophoblast research award lecture: origin, evolution and future of placenta miRNAs. Placenta 35:39–45CrossRefGoogle Scholar
  43. Ospina-Prieto S et al (2016) MicroRNA-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Transl Res 172:61–72CrossRefGoogle Scholar
  44. Persson G et al (2017) HLA class Ib in pregnancy and pregnancy-related disorders. Immunogenetics 69(8–9):581–595CrossRefGoogle Scholar
  45. Piccinni MP et al (2000) Role of hormone-controlled Th1- and Th2-type cytokines in successful pregnancy. J Neuroimmunol 109(1):30–33CrossRefGoogle Scholar
  46. Poehlmann TG et al (2006) Inhibition of term decidual NK cell cytotoxicity by soluble HLA-G1. Am J Reprod Immunol 56(5–6):275–285CrossRefGoogle Scholar
  47. Porcheray F et al (2005) Macrophage activation switching: an asset for the resolution of inflammation. Clin Exp Immunol 142(3):481–489PubMedPubMedCentralGoogle Scholar
  48. Redman CW, Sacks GP, Sargent IL (1999) Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 180(2 Pt 1):499–506CrossRefGoogle Scholar
  49. Reister F et al (2001) Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest 81(8):1143–1152CrossRefGoogle Scholar
  50. Reyes L, Wolfe B, Golos T (2017) Hofbauer cells: Placental macrophages of fetal origin. Results Probl Cell Differ 62:45–60CrossRefGoogle Scholar
  51. Robinson DP, Klein SL (2012) Pregnancy and pregnancy-associated hormones alter immune responses and disease pathogenesis. Horm Behav 62(3):263–271CrossRefGoogle Scholar
  52. Saito S (2000) Cytokine network at the feto-maternal interface. J Reprod Immunol 47(2):87–103CrossRefGoogle Scholar
  53. Saito S, Sasaki Y, Sakai M (2005) CD4(+)CD25high regulatory T cells in human pregnancy. J Reprod Immunol 65(2):111–120CrossRefGoogle Scholar
  54. Santoni A, Carlino C, Gismondi A (2008) Uterine NK cell development, migration and function. Reprod Biomed Online 16(2):202–210CrossRefGoogle Scholar
  55. Schamberger S et al (2013) Establishment of a one-sided ex vivo human placenta perfusion model to assess adhesion and invasion behavior of T cell leukemia cell lines. Leuk Lymphoma 54(8):1811–1813CrossRefGoogle Scholar
  56. Schmorl CG (1893) Pathologisch-anatomische Untersuchungen über Puerperal-Eklampsie. F. C. W Vogel, LeipzigGoogle Scholar
  57. Seshadri S, Sunkara SK (2014) Natural killer cells in female infertility and recurrent miscarriage: a systematic review and meta-analysis. Hum Reprod Update 20(3):429–438CrossRefGoogle Scholar
  58. Silini AR et al (2017) Is immune modulation the mechanism underlying the beneficial effects of amniotic cells and their derivatives in regenerative medicine? Cell Transplant 26(4):531–539CrossRefGoogle Scholar
  59. Singh U et al (2005) Immunological properties of human decidual macrophages – a possible role in intrauterine immunity. Reproduction 129(5):631–637CrossRefGoogle Scholar
  60. Smith SD et al (2009) Evidence for immune cell involvement in decidual spiral arteriole remodeling in early human pregnancy. Am J Pathol 174(5):1959–1971CrossRefGoogle Scholar
  61. Steinborn A et al (2012) Pregnancy-associated diseases are characterized by the composition of the systemic regulatory T cell (Treg) pool with distinct subsets of Tregs. Clin Exp Immunol 167(1):84–98CrossRefGoogle Scholar
  62. Svensson-Arvelund J et al (2014) The placenta in toxicology. Part II: systemic and local immune adaptations in pregnancy. Toxicol Pathol 42(2):327–338CrossRefGoogle Scholar
  63. Svensson J et al (2011) Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol 187(7):3671–3682CrossRefGoogle Scholar
  64. Szekeres-Bartho J, Polgar B (2010) PIBF: the double edged sword. Pregnancy and tumor. Am J Reprod Immunol 64(2):77–86PubMedGoogle Scholar
  65. Szekeres-Bartho J, Wegmann TG (1996) A progesterone-dependent immunomodulatory protein alters the Th1/Th2 balance. J Reprod Immunol 31(1–2):81–95CrossRefGoogle Scholar
  66. Szekeres-Bartho J, Halasz M, Palkovics T (2009) Progesterone in pregnancy; receptor-ligand interaction and signaling pathways. J Reprod Immunol 83(1–2):60–64CrossRefGoogle Scholar
  67. Szekeres-Bartho J, Markert UR, Varla-Leftherioti M (2015) Immunology in reproduction. J Reprod Immunol 108:1CrossRefGoogle Scholar
  68. Szekeres-Bartho J et al (2001) Progesterone as an immunomodulatory molecule. Int Immunopharmacol 1(6):1037–1048CrossRefGoogle Scholar
  69. Szekeres-Bartho J et al (2005) Progesterone-dependent immunomodulation. Chem Immunol Allergy 89:118–125CrossRefGoogle Scholar
  70. Tao Y et al (2015) CD56(bright)CD25+ NK cells are preferentially recruited to the maternal/fetal interface in early human pregnancy. Cell Mol Immunol 12(1):77–86CrossRefGoogle Scholar
  71. Terness P et al (2007) Tolerance signaling molecules and pregnancy: IDO, galectins, and the renaissance of regulatory T cells. Am J Reprod Immunol 58(3):238–254CrossRefGoogle Scholar
  72. Trundley A, Moffett A (2004) Human uterine leukocytes and pregnancy. Tissue Antigens 63(1):1–12CrossRefGoogle Scholar
  73. Tuckerman E et al (2010) Uterine natural killer cells in peri-implantation endometrium from women with repeated implantation failure after IVF. J Reprod Immunol 87(1–2):60–66CrossRefGoogle Scholar
  74. Uckan D et al (1997) Trophoblasts express Fas ligand: a proposed mechanism for immune privilege in placenta and maternal invasion. Mol Hum Reprod 3(8):655–662CrossRefGoogle Scholar
  75. Vacca P, Mingari MC, Moretta L (2013) Natural killer cells in human pregnancy. J Reprod Immunol 97(1):14–19CrossRefGoogle Scholar
  76. VanWijk MJ et al (2002) Microparticle subpopulations are increased in preeclampsia: possible involvement in vascular dysfunction? Am J Obstet Gynecol 187(2):450–456CrossRefGoogle Scholar
  77. Wegmann TG et al (1993) Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 14(7):353–356CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Udo R. Markert
    • 1
    Email author
  • Johanna Seitz
    • 2
  • Theresa Hofmann
    • 2
  • Juliane Götze
    • 3
  • Sebastian Schamberger
    • 4
  1. 1.Forschungszentrum Lobeda, Haus 2, Placenta LaborUniversitätsklinikum Jena, Forschungszentrum Lobeda, Haus 2JenaDeutschland
  2. 2.Abteilung für Geburtsmedizin, Placenta LaborUniversitätsklinikum JenaJenaDeutschland
  3. 3.Klinik für Anästhesie und IntensivmedizinJenaDeutschland
  4. 4.Klinik für Anästhesie und IntensivmedizinUniversitätsklinikum JenaMainzDeutschland

Personalised recommendations