Advertisement

Die Plazenta pp 247-285 | Cite as

Plazentainsuffizienz/Plazentaassoziierte Erkrankungen

  • Berthold Huppertz
  • Ulrich Pecks
  • Holger Stepan
Chapter

Zusammenfassung

In diesem Kapitel werden zwei wichtige Plazenta-assoziierte Schwangerschaftserkrankungen beschrieben: die Präeklampsie und die fetale Wachstumsrestriktion (IUGR). Bei beiden Erkrankungen sind die Abfolgen der Entstehung noch weitestgehend ungeklärt. Daher wird im ersten Abschnitt versucht, die aktuellen Hypothesen zur Entstehung beider Syndrome zusammenzufassen und den alten Hypothesen entgegenzustellen. Dabei zeigt sich die entscheidende Rolle des Zusammenspiels zwischen Mutter und Plazenta. Der zweite Abschnitt beinhaltet die Diagnostik und das Management der fetalen Wachstumsrestriktion und welche große Studien augenblicklich laufen, um die beste Versorgung des Kindes zu ermitteln. Der letzte Abschnitt befasst sich mit der Diagnostik und dem Management der Präeklampsie. Hier finden sich auch Informationen zu prädiktiven Biomarkern, der Risikoabschätzung im ersten Trimenon und den Langzeiterkrankungen durch Präeklampsie.

Literatur

Literatur zu Abschn. 11.1

  1. Bahlmann F, Fittschen M, Reinhard I, Wellek S, Steiner E (2012) Reference values for blood flow velocity in the uterine artery in normal pregnancies from 18 weeks to 42 weeks of gestation calculated by automatic Doppler waveform analysis. Ultraschall in Med 33:258–264CrossRefGoogle Scholar
  2. Burton GJ, Woods AW, Jauniaux E, Kingdom JC (2009) Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30:473–482PubMedCentralPubMedCrossRefGoogle Scholar
  3. Chafetz I, Kuhnreich I, Sammar M, Tal Y, Gibor Y, Meiri H, Cuckle H, Wolf M (2007) First-trimester placental protein 13 screening for preeclampsia and intrauterine growth restriction. Am J Obstet Gynecol 197:35.e1–7Google Scholar
  4. Choudhury M, Friedman JE (2012) Epigenetics and microRNAs in preeclampsia. Clin Exp Hypertens 34:334–341PubMedCentralPubMedCrossRefGoogle Scholar
  5. Dadelszen P von, Magee LA, Roberts JM (2003) Subclassification of preeclampsia. Hypertens Pregnancy 22:143–148CrossRefGoogle Scholar
  6. Davey DA, MacGillivray I (1988) The classification and definition of the hypertensive disorders of pregnancy. Am J Obstet Gynecol 158:892–898PubMedCrossRefGoogle Scholar
  7. Douglas KA, Redman CW (1994) Eclampsia in the United Kingdom. BMJ 309:1395–1400PubMedCentralPubMedCrossRefGoogle Scholar
  8. Ehr J von, Versen-Höynck F von (2016) Implications of maternal conditions and pregnancy course on offspring’s medical problems in adult life. Arch Gynecol Obstet 294:673–679CrossRefGoogle Scholar
  9. Godfrey KM, Barker DJ (2001) Fetal programming and adult health. Pub Health Nutr 4:611–624CrossRefGoogle Scholar
  10. Goswami D, Tannetta DS, Magee LA, Fuchisawa A, Redman CW, Sargent IL, Dadelszen P von (2006) Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta 27:56–61PubMedCrossRefGoogle Scholar
  11. Hogg K, Blair JD, McFadden DE, Dadelszen P von, Robinson WP (2013) Early onset pre-eclampsia is associated with altered DNA methylation of cortisol-signalling and steroidogenic genes in the placenta. PLoS 8:e62969CrossRefGoogle Scholar
  12. Huppertz B (2008) Placental origins of preeclampsia: challenging the current hypothesis. Hypertension 51:970–975PubMedCrossRefGoogle Scholar
  13. Huppertz B (2010) IFPA Award in Placentology Lecture: biology of the placental syncytiotrophoblast–myths and facts. Placenta 31(Suppl):75–81PubMedCrossRefGoogle Scholar
  14. Huppertz B (2011) Trophoblast differentiation, fetal growth restriction and preeclampsia. Pregnancy Hypertens 1:79–86PubMedCrossRefGoogle Scholar
  15. Huppertz B, Kadyrov M, Kingdom JC (2006) Apoptosis and its role in the trophoblast. Am J Obstet Gynecol 195:29–39PubMedCrossRefGoogle Scholar
  16. Huppertz B, Gauster M, Orendi K, König J, Moser G (2009) Oxygen as modulator of trophoblast invasion. J Anat 215:14–20PubMedCentralPubMedCrossRefGoogle Scholar
  17. Huppertz B, Sammar M, Chefetz I, Neumaier-Wagner P, Bartz C, Meiri H (2008) Longitudinal determination of serum placental protein 13 during development of preeclampsia. Fetal Diagn Ther 24:230–236Google Scholar
  18. Irgens HU, Reisaeter L, Irgens LM, Lie RT (2001) Long term mortality of mothers and fathers after pre-eclampsia: population based cohort study. BMJ 323:1213–1217PubMedCentralPubMedCrossRefGoogle Scholar
  19. Jauniaux E, Greenwold N, Hempstock J, Burton GJ (2003) Comparison of ultrasonographic and doppler mapping of the intervillous circulation in normal and abnormal early pregnancies. Fertil Steril 79:100–106PubMedCrossRefGoogle Scholar
  20. Jauniaux E, Watson AL, Hempstock J, Bao YP, Skepper JN, Burton GJ (2000) Onset of maternal arterial blood flow and placental oxidative stress; a possible factor in human early pregnancy failure. Am J Pathol 157:2111–2122CrossRefPubMedPubMedCentralGoogle Scholar
  21. Johansen M, Redman CW, Wilkins T, Sargent IL (1999) Trophoblast deportation in human pregnancy – its relevance for pre-eclampsia. Placenta 20:531–539PubMedCrossRefGoogle Scholar
  22. Kakogawa J, Sumimoto K, Kawamura T, Minoura S, Kanayama N (2010) Noninvasive monitoring of placental oxygenation by near-infrared spectroscopy. Am J Perinatol 27:463–468PubMedCrossRefGoogle Scholar
  23. Kaufmann P, Black S, Huppertz B (2003) Endovascular trophoblast invasion: implications for the pathogenesis of intrauterine growth retardation and preeclampsia. Biol Reprod 69:1–7PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kawamura T, Kakogawa J, Takeuchi Y, Takani S, Kimura S, Nishiguchi T, Sugimura M, Sumimoto K, Kanayama N (2007) Measurement of placental oxygenation by transabdominal near-infrared spectroscopy. Am J Perinatol 24:161–166PubMedCrossRefGoogle Scholar
  25. Kingdom JC, Kaufmann P (1997) Oxygen and placental villous development: origins of fetal hypoxia. Placenta 18:613–621PubMedCrossRefGoogle Scholar
  26. Konje JC, Kaufmann P, Bell SC, Taylor DJ (2001) A longitudinal study of quantitative uterine blood flow with the use of color power angiography in appropriate for gestational age pregnancies. Am J Obstet Gynecol 185:608–613PubMedCrossRefGoogle Scholar
  27. Levine RJ, Hauth JC, Curet LB, Sibai BM, Catalano PM, Morris CD, DerSimonian R, Esterlitz JR, Raymond EG, Bild DE, Clemens JD, Cutler JA (1997) Trial of calcium to prevent preeclampsia. N Engl J Med 337:69–76PubMedCrossRefGoogle Scholar
  28. Lindheimer MD, Taler SJ, Cunningham FG; American Society of Hypertension (2009) ASH position paper: hypertension in pregnancy. J Clin Hypertens (Greenwich) 11:214–225CrossRefGoogle Scholar
  29. Longtine MS, Nelson DM (2011) Placental dysfunction and fetal programming: the importance of placental size, shape, histopathology, and molecular composition. Semin Reprod Med 29:187–196PubMedCentralPubMedCrossRefGoogle Scholar
  30. MacKay AP, Berg CJ, Atrash HK (2001) Pregnancy-related mortality from preeclampsia and eclampsia. Obstet Gynecol 97:533–538PubMedGoogle Scholar
  31. Mongraw-Chaffin ML, Cirillo PM, Cohn BA (2010) Preeclampsia and cardiovascular disease death: prospective evidence from the child health and development studies cohort. Hypertension 56:166–171PubMedCentralPubMedCrossRefGoogle Scholar
  32. Moodley J, Kalane G (2006) A review of the management of eclampsia: practical issues. Hypertens Pregnancy 25:47–62PubMedCrossRefGoogle Scholar
  33. Myatt L, Miodovnik M (1999) Prediction of preeclampsia. Semin Perinatol 25:45–57CrossRefGoogle Scholar
  34. Nicolaides KH, Bindra R, Turan OM, Chefetz I, Sammar M, Meiri H, Tal J, Cuckle HS (2006) A novel approach to first-trimester screening for early pre-eclampsia combining serum PP-13 and Doppler ultrasound. Ultrasound Obstet Gynecol 27:13–17PubMedCrossRefGoogle Scholar
  35. Pijnenborg R, Vercruysse L, Hanssens M (2006) The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 27:939–958PubMedCrossRefGoogle Scholar
  36. Pilalis A, Souka AP, Antsaklis P, Basayiannis K, Benardis P, Haidopoulos D, Papantoniou N, Mesogitis S, Antsaklis A (2007) Screening for pre-eclampsia and small for gestational age fetuses at the 11-14 weeks scan by uterine artery Dopplers. Acta Obstet Gynecol Scand 86:530–534PubMedCrossRefGoogle Scholar
  37. Redman CW, Sargent IL (2000) Placental debris, oxidative stress and pre-eclampsia. Placenta 21:597–602PubMedCrossRefGoogle Scholar
  38. Roberts JM, Cooper DW (2001) Pathogenesis and genetics of preeclampsia. Lancet 357:53–56PubMedCrossRefGoogle Scholar
  39. Rodesch F, Simon P, Donner C, Jauniaux E (1992) Oxygen measurements in endometrial and trophoblastic tissues during early pregnancy. Obstet Gynecol 80:283–285PubMedGoogle Scholar
  40. Schaaps JP, Tsatsaris V, Goffin F, Brichant JF, Delbecque K, Tebache M, Collignon L, Retz MC, Foidart JM (2005) Shunting the intervillous space: new concepts in human uteroplacental vascularization. Am J Obstet Gynecol 192:323–332PubMedCrossRefGoogle Scholar
  41. Schaarschmidt W, Rana S, Stepan H (2013) The course of angiogenic factors in early- vs. late-onset preeclampsia and HELLP syndrome. J Perinat Med 41:511–516PubMedCentralPubMedCrossRefGoogle Scholar
  42. Sibai BM (1990) Eclampsia. VI. Maternal-perinatal outcome in 254 consecutive cases. Am J Obstet Gynecol 163:1049–1054PubMedCrossRefGoogle Scholar
  43. Sibai BM (2004) Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 103:981–991PubMedCrossRefGoogle Scholar
  44. Sibai BN, Caritis SN, Thom E, Klebanoff M, McNellis D, Rocco L, Paul RH, Romero R, Witter F, Rosen M, Depp R (1993) Prevention of preeclampsia with low-dose aspirin in health. Nulliparous pregnant women. N Engl J Med 329:1213–1218PubMedCrossRefGoogle Scholar
  45. Sibley CP, Pardi G, Cetin I, Todros T, Piccoli E, Kaufmann P, Huppertz B, Bulfamante G, Cribiu FM, Ayuk P, Glazier J, Radaelli T (2002) Pathogenesis of intrauterine growth restriction (IUGR)-conclusions derived from a European Union Biomed 2 Concerted Action project ‘Importance of Oxygen Supply in Intrauterine Growth Restricted Pregnancies’ − a workshop report. Placenta 23 Suppl A:75–79PubMedCrossRefGoogle Scholar
  46. Smith GC, Pell JP, Walsh D (2001a) Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet 357:2002–2006PubMedCrossRefGoogle Scholar
  47. Srinivas SK, Edlow AG, Neff PM, Sammel MD, Andrela CM, Elovitz MA (2009) Rethinking IUGR in preeclampsia: dependent or independent of maternal hypertension? J Perinatol 29:680–684PubMedCentralPubMedCrossRefGoogle Scholar
  48. Walker JJ (2000) Preeclampsia. Lancet 356:1260–1265PubMedCrossRefGoogle Scholar

Literatur zu Abschn. 11.2

  1. Arabin B, Siebert M, Jimenez E, Saling E (1988) Obstetrical characteristics of a loss of end-diastolic velocities in the fetal aorta and/or umbilical artery using Doppler ultrasound. Gynecol Obstet Invest 25:173–180PubMedCrossRefGoogle Scholar
  2. Arbeille P, Maulik D, Fignon A et al (1995) Assessment of the fetal PO2 changes by cerebral and umbilical Doppler on lamb fetuses during acute hypoxia. Ultrasound Med Biol 21:861–870PubMedCrossRefGoogle Scholar
  3. Aucott SW, Donohue PK, Northington FJ (2004) Increased morbidity in severe early intrauterine growth restriction. J Perinatol 24:435–440.  https://doi.org/10.1038/sj.jp.7211116CrossRefPubMedGoogle Scholar
  4. Baschat A (2013) Fetale Wachstumsrestriktion. Ultraschalldiagnostik in Geburtshilfe und Gynäkologie. Springer, Berlin, S 519–539CrossRefGoogle Scholar
  5. Baschat AA (2011) Neurodevelopment following fetal growth restriction and its relationship with antepartum parameters of placental dysfunction. Ultrasound Obstet Gynecol 37:501–514.  https://doi.org/10.1002/uog.9008CrossRefPubMedGoogle Scholar
  6. Baschat AA, Cosmi E, Bilardo CM et al (2007) Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol 109:253–261.  https://doi.org/10.1097/01.aog.0000253215.79121.75CrossRefPubMedCentralPubMedGoogle Scholar
  7. Blair EM, Nelson KB (2015) Fetal growth restriction and risk of cerebral palsy in singletons born after at least 35 weeks’ gestation. Am J Obstet Gynecol 212:520.e1–7  https://doi.org/10.1016/j.ajog.2014.10.1103CrossRefGoogle Scholar
  8. Boers KE, Vijgen SMC, Bijlenga D et al (2010) Induction versus expectant monitoring for intrauterine growth restriction at term: randomised equivalence trial (DIGITAT). BMJ 341:c7087–c7087.  https://doi.org/10.1136/bmj.c7087CrossRefPubMedCentralPubMedGoogle Scholar
  9. Butt K, Lim K, Society of Obstetricians and Gynaecologists of Canada (2014) Determination of gestational age by ultrasound. J Obstet Gynaecol Can 36:171–183PubMedCrossRefGoogle Scholar
  10. Campbell S, Thoms A (1977) Ultrasound measurement of the fetal head to abdomen circumference ratio in the assessment of growth retardation. Br J Obs Gynaecol 84:165–174CrossRefGoogle Scholar
  11. Chauhan SP, Taylor M, Shields D et al (2007) Intrauterine growth restriction and oligohydramnios among high-risk patients. Am J Perinatol 24:215–221PubMedCrossRefGoogle Scholar
  12. Cianfarani S, Agostoni C, Bedogni G et al (2012) Effect of intrauterine growth retardation on liver and long-term metabolic risk. Int J Obes (Lond) 36:1270–1277.  https://doi.org/10.1038/ijo.2012.54CrossRefGoogle Scholar
  13. Dashe JS, McIntire DD, Lucas MJ, Leveno KJ (2000) Effects of symmetric and asymmetric fetal growth on pregnancy outcomes. Obstet Gynecol 96:321–327PubMedGoogle Scholar
  14. DeVore GR (2015) The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol 213:5–15.  https://doi.org/10.1016/j.ajog.2015.05.024CrossRefPubMedGoogle Scholar
  15. Divon MY, Chamberlain PF, Sipos L et al (1986) Identification of the small for gestational age fetus with the use of gestational age-independent indices of fetal growth. Am J Obstet Gynecol 155:1197–1201PubMedCrossRefGoogle Scholar
  16. Ferrazzi E, Bozzo M, Rigano S et al (2002) Temporal sequence of abnormal doppler changes in the peripheral and central circulatory systems of the severely growth-restricted fetus. Ultrasound Obstet Gynecol 19:140–146.  https://doi.org/10.1046/j.0960-7692.2002.00627.xCrossRefPubMedCentralPubMedGoogle Scholar
  17. Flood K, Unterscheider J, Daly S et al (2014) The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study. Am J Obstet Gynecol 211:288.e1–5.  https://doi.org/10.1016/j.ajog.2014.05.008CrossRefGoogle Scholar
  18. Frøen JF, Heazell AEP, Tveit JVH et al (2008) Fetal movement assessment. Semin Perinatol 32:243–246.  https://doi.org/10.1053/j.semperi.2008.04.004CrossRefPubMedGoogle Scholar
  19. Gardosi J, Clausson B, Francis A (2009) The value of customised centiles in assessing perinatal mortality risk associated with parity and maternal size. BJOG 116:1356–1363.  https://doi.org/10.1111/j.1471-0528.2009.02245.xCrossRefPubMedGoogle Scholar
  20. Gardosi J, Giddings S, Buller S et al (2014) Preventing stillbirths through improved antenatal recognition of pregnancies at risk due to fetal growth restriction. Public Health 128:698–702.  https://doi.org/10.1016/j.puhe.2014.06.022CrossRefPubMedGoogle Scholar
  21. Gardosi J, Madurasinghe V, Williams M et al (2013) Maternal and fetal risk factors for stillbirth: population based study. BMJ 346:f108–f108.  https://doi.org/10.1136/bmj.f108CrossRefPubMedCentralPubMedGoogle Scholar
  22. Getahun D, Ananth CV, Kinzler WL (2007) Risk factors for antepartum and intrapartum stillbirth: a population-based study. Am J Obstet Gynecol 196:499–507.  https://doi.org/10.1016/j.ajog.2006.09.017CrossRefPubMedGoogle Scholar
  23. Hadlock FP, Harrist RB, Sharman RS et al (1985) Estimation of fetal weight with the use of head, body, and femur measurements–a prospective study. Am J Obs Gynecol 151:333–337CrossRefGoogle Scholar
  24. Haugen G, Kiserud T, Godfrey K et al (2004) Portal and umbilical venous blood supply to the liver in the human fetus near term. Ultrasound Obstet Gynecol 24:599–605.  https://doi.org/10.1002/uog.1744CrossRefPubMedGoogle Scholar
  25. Hay WW (2006) Recent observations on the regulation of fetal metabolism by glucose. J Physiol 572:17–24.  https://doi.org/10.1113/jphysiol.2006.105072CrossRefPubMedCentralPubMedGoogle Scholar
  26. Hofstaetter C, Gudmundsson S, Hansmann M (2002) Venous doppler velocimetry in the surveillance of severely compromised fetuses. Ultrasound Obstet Gynecol 20:233–239.  https://doi.org/10.1046/j.1469-0705.2002.00791.xCrossRefPubMedGoogle Scholar
  27. Hübner J, Gast A-S, Müller AM et al (2015) Stillbirths in Germany: retrospective analysis of 168 cases between 2003 and 2011. Z Geburtshilfe Neonatol 219:73–80.  https://doi.org/10.1055/s-0034-1395654CrossRefPubMedGoogle Scholar
  28. Jarvis S, Glinianaia SV, Torrioli M-G et al (2003) Cerebral palsy and intrauterine growth in single births: European collaborative study. Lancet 362:1106–1111.  https://doi.org/10.1016/s0140-6736(03)14466-2CrossRefPubMedGoogle Scholar
  29. Jong CL de, Francis A, Geijn HP van, Gardosi J (1999) Fetal growth rate and adverse perinatal events. Ultrasound Obstet Gynecol 13:86–89.  https://doi.org/10.1046/j.1469-0705.1999.13020086.xCrossRefPubMedGoogle Scholar
  30. Khalil AA, Morales-Rosello J, Elsaddig M et al (2015) The association between fetal doppler and admission to neonatal unit at term. Am J Obstet Gynecol 213:57.e1–7.  https://doi.org/10.1016/j.ajog.2014.10.013CrossRefGoogle Scholar
  31. Khoury MJ, Erickson JD, Cordero JF, McCarthy BJ (1988) Congenital malformations and intrauterine growth retardation: a population study. Pediatrics 82:83–90PubMedGoogle Scholar
  32. Kiserud T, Kessler J, Ebbing C, Rasmussen S (2006) Ductus venosus shunting in growth-restricted fetuses and the effect of umbilical circulatory compromise. Ultrasound Obstet Gynecol 28:143–149.  https://doi.org/10.1002/uog.2784CrossRefPubMedGoogle Scholar
  33. Lee PA, Chernausek SD, Hokken-Koelega AC, Czernichow P (2003) International small for gestational age advisory board consensus development conference statement: management of short children born small for gestational age, april 24-october 1, 2001. Pediatrics 111:1253–1261PubMedCrossRefGoogle Scholar
  34. Lees C, Marlow N, Arabin B et al (2013) Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE). Ultrasound Obstet Gynecol 42:400–408.  https://doi.org/10.1002/uog.13190CrossRefPubMedGoogle Scholar
  35. Lees CC, Marlow N, Wassenaer-Leemhuis A van et al (2015) 2 year neurodevelopmental and intermediate perinatal outcomes in infants with very preterm fetal growth restriction (TRUFFLE): a randomised trial. Lancet 385:2162–2172.  https://doi.org/10.1016/s0140-6736(14)62049-3CrossRefPubMedGoogle Scholar
  36. Longo S, Borghesi A, Tzialla C, Stronati M (2014) IUGR and infections. Early Hum Dev 90(1):S42–44.  https://doi.org/10.1016/s0378-3782(14)70014-3CrossRefPubMedGoogle Scholar
  37. Lunde A, Melve KK, Gjessing HK et al (2007) Genetic and environmental influences on birth weight, birth length, head circumference, and gestational age by use of population-based parent-offspring data. Am J Epidemiol 165:734–741.  https://doi.org/10.1093/aje/kwk107CrossRefPubMedGoogle Scholar
  38. Manning FA (2002) Fetal biophysical profile: a critical appraisal. Clin Obstet Gynecol 45:975–985PubMedCrossRefGoogle Scholar
  39. McIntire DD, Bloom SL, Casey BM, Leveno KJ (1999) Birth weight in relation to morbidity and mortality among newborn infants. N Engl J Med 340:1234–1238.  https://doi.org/10.1056/nejm199904223401603CrossRefPubMedGoogle Scholar
  40. Meher S, Hernandez-Andrade E, Basheer SN, Lees C (2015) Impact of cerebral redistribution on neurodevelopmental outcome in small-for-gestational-age or growth-restricted babies: a systematic review. Ultrasound Obstet Gynecol 46:398–404.  https://doi.org/10.1002/uog.14818CrossRefPubMedGoogle Scholar
  41. Mongelli M, Ek S, Tambyrajia R (1998) Screening for fetal growth restriction: a mathematical model of the effect of time interval and ultrasound error. Obs Gynecol 92:908–912Google Scholar
  42. Morrow RJ, Adamson SL, Bull SB, Ritchie JW (1989) Effect of placental embolization on the umbilical arterial velocity waveform in fetal sheep. Am J Obstet Gynecol 161:1055–1060PubMedCrossRefGoogle Scholar
  43. Nicolaides KH, Peters MT, Vyas S et al (1990) Relation of rate of urine production to oxygen tension in small-for-gestational-age fetuses. Am J Obstet Gynecol 162:387–391PubMedCrossRefGoogle Scholar
  44. Ott WJ (1988) The diagnosis of altered fetal growth. Obstet Gynecol Clin North Am 15:237–263PubMedGoogle Scholar
  45. Ott WJ (1990) Comparison of dynamic image and pulsed Doppler ultrasonography for the diagnosis of intrauterine growth retardation. J Clin Ultrasound 18:3–7PubMedCrossRefGoogle Scholar
  46. Parra-Saavedra M, Crovetto F, Triunfo S et al (2014) Association of Doppler parameters with placental signs of underperfusion in late-onset small-for-gestational-age pregnancies. Ultrasound Obstet Gynecol 44:330–337.  https://doi.org/10.1002/uog.13358CrossRefPubMedGoogle Scholar
  47. Pecks U, Brieger M, Schiessl B et al (2012) Maternal and fetal cord blood lipids in intrauterine growth restriction. J Perinat Med 40:287–296.  https://doi.org/10.1515/jpm.2011.135CrossRefPubMedGoogle Scholar
  48. Pecks U, Kirschner I, Wölter M et al (2014) Mass spectrometric profiling of cord blood serum proteomes to distinguish infants with intrauterine growth restriction from those who are small for gestational age and from control individuals. Transl Res 164:57–69.  https://doi.org/10.1016/j.trsl.2013.12.003CrossRefPubMedGoogle Scholar
  49. Pecks U, Rath W, Maass N et al (2016) Fetal gender and gestational age differentially affect PCSK9 levels in intrauterine growth restriction. Lipids Health Dis 15:193.  https://doi.org/10.1186/s12944-016-0365-6CrossRefPubMedCentralPubMedGoogle Scholar
  50. Pike K, Jane Pillow J, Lucas JS (2012) Long term respiratory consequences of intrauterine growth restriction. Semin Fetal Neonatal Med 17:92–98.  https://doi.org/10.1016/j.siny.2012.01.003CrossRefPubMedGoogle Scholar
  51. Pilliod RA, Cheng YW, Snowden JM et al (2012) The risk of intrauterine fetal death in the small-for-gestational-age fetus. Am J Obstet Gynecol 207:318.e1–6.  https://doi.org/10.1016/j.ajog.2012.06.039CrossRefGoogle Scholar
  52. Roma E, Arnau A, Berdala R et al (2015) Ultrasound screening for fetal growth restriction at 36 vs 32 weeks’ gestation: a randomized trial (ROUTE). Ultrasound Obstet Gynecol 46:391–397.  https://doi.org/10.1002/uog.14915CrossRefPubMedGoogle Scholar
  53. Savchev S, Figueras F, Sanz-Cortes M et al (2014) Evaluation of an optimal gestational age cut-off for the definition of early- and late-onset fetal growth restriction. Fetal Diagn Ther 36:99–105.  https://doi.org/10.1159/000355525CrossRefPubMedGoogle Scholar
  54. Sheth T, Glantz JC (2016) Third-trimester fetal biometry and neonatal outcomes in term and preterm deliveries. J Ultrasound Med 35:103–110.  https://doi.org/10.7863/ultra.15.02040CrossRefPubMedGoogle Scholar
  55. Simon NV, O’Connor TJ, Shearer DM (1990) Detection of intrauterine fetal growth retardation with abdominal circumference and estimated fetal weight using cross-sectional growth curves. J Clin Ultrasound 18:685–690PubMedCrossRefGoogle Scholar
  56. Stampalija T, Arabin B, Wolf H et al (2017) Is middle cerebral artery doppler related to neonatal and 2-year infant outcome in early fetal growth restriction? Am J Obstet Gynecol.  https://doi.org/10.1016/j.ajog.2017.01.001CrossRefPubMedGoogle Scholar
  57. Svensson AC, Pawitan Y, Cnattingius S et al (2006) Familial aggregation of small-for-gestational-age births: the importance of fetal genetic effects. Am J Obstet Gynecol 194:475–479.  https://doi.org/10.1016/j.ajog.2005.08.019CrossRefPubMedGoogle Scholar
  58. Thornton JG, Hornbuckle J, Vail A et al (2004) Infant wellbeing at 2 years of age in the Growth Restriction Intervention Trial (GRIT): multicentred randomised controlled trial. Lancet 364:513–520.  https://doi.org/10.1016/s0140-6736(04)16809-8CrossRefPubMedGoogle Scholar
  59. Torrance HL, Bloemen MCT, Mulder EJH et al (2010) Predictors of outcome at 2 years of age after early intrauterine growth restriction. Ultrasound Obstet Gynecol 36:171–177.  https://doi.org/10.1002/uog.7627CrossRefPubMedGoogle Scholar
  60. Turan OM, Turan S, Gungor S et al (2008) Progression of doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol 32:160–167.  https://doi.org/10.1002/uog.5386CrossRefPubMedGoogle Scholar
  61. Tyson JE, Parikh NA, Langer J et al (2008) Intensive care for extreme prematurity – moving beyond gestational age. N Engl J Med 358:1672–1681.  https://doi.org/10.1056/nejmoa073059CrossRefPubMedCentralPubMedGoogle Scholar
  62. Unterscheider J, Daly S, Geary MP, et al (2013a) Optimizing the definition of intrauterine growth restriction: the multicenter prospective PORTO Study. Am J Obstet Gynecol 208:290.e1–290.e6.  https://doi.org/10.1016/j.ajog.2013.02.007CrossRefGoogle Scholar
  63. Unterscheider J, Daly S, Geary MP, et al (2013b) Predictable progressive Doppler deterioration in IUGR: does it really exist? Am J Obstet Gynecol 209:539.e1–539.e7.  https://doi.org/10.1016/j.ajog.2013.08.039CrossRefGoogle Scholar
  64. Van den Berg BJ, Yerushalmy J (1966) The relationship of the rate of intrauterine growth of infants of low birth weight to mortality, morbidity, and congenital anomalies. J Pediatr 69:531–545PubMedCrossRefGoogle Scholar
  65. Vergani P, Roncaglia N, Locatelli A et al (2005) Antenatal predictors of neonatal outcome in fetal growth restriction with absent end-diastolic flow in the umbilical artery. Am J Obstet Gynecol 193:1213–1218.  https://doi.org/10.1016/j.ajog.2005.07.032CrossRefPubMedGoogle Scholar
  66. Visser GHA, Bilardo C, Derks JB et al (2016) The TRUFFLE study; fetal monitoring indications for delivery in 310 IUGR infants with 2 year’s outcome delivered before 32 weeks of gestation. Ultrasound Obstet Gynecol.  https://doi.org/10.1002/uog.17361CrossRefGoogle Scholar
  67. Voigt M, Schneider KT, Jahrig K (1996) Analysis of a 1992 birth sample in Germany. 1: new percentile values of the body weight of newborn infants. Geburtsh Frauenheilk 56:550–558PubMedCrossRefGoogle Scholar
  68. Voigt M, Rochow N, Schneider KTM et al (2014) New percentile values for the anthropometric dimensions of singleton neonates: analysis of perinatal survey data of 2007−2011 from all 16 states of Germany. Z Geburtshilfe Neonatol 218:210–217.  https://doi.org/10.1055/s-0034-1385857CrossRefPubMedGoogle Scholar
  69. Walker D-M, Marlow N, Upstone L et al (2011) The growth restriction intervention trial: long-term outcomes in a randomized trial of timing of delivery in fetal growth restriction. Am J Obstet Gynecol 204:34.e1–9.  https://doi.org/10.1016/j.ajog.2010.09.019CrossRefGoogle Scholar
  70. Gembruch U, Hecher K, Steiner H (2013) Prädiktiver Ultraschall für Präeklampsie und intrauterine Wachstumsretardierung im II. Trimenon. In: Ultraschalldiagnostik in Geburtshilfe und Gynäkologie. Springer, Berlin, S 467–478Google Scholar
  71. Wyk L van, Boers KE, Post JAM van der et al (2012) Effects on (neuro)developmental and behavioral outcome at 2 years of age of induced labor compared with expectant management in intrauterine growth-restricted infants: long-term outcomes of the DIGITAT trial. Am J Obstet Gynecol 206:406.e1–7.  https://doi.org/10.1016/j.ajog.2012.02.003CrossRefGoogle Scholar

Literatur zu Abschn. 11.3

  1. Akolekar R, Syngelaki A, Sarquis R, Zvanca M, Nicolaides KH (2011) Prediction of early, intermediate and late pre-eclampsia from maternal factors, biophysical and biochemical markers at 11–13 weeks. Prenat Diagn 31(1):66–74PubMedCrossRefGoogle Scholar
  2. Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF) (2014) Hypertensive Schwangerschaftserkrankungen: Diagnostik und Therapie. AWMF Register-Nr. 015-018, 28.01.2014 redaktionell überarbeitet. http://www.awmf.org/uploads/tx_szleitlinien/015-018l_S1_Diagnostik_Therapie_hypertensiver_Schwangerschaftserkrankungen_2014-01.pdf. Zugegriffen: 29. Nov. 2017
  3. Chaiworapongsa T et al (2014) Pre-eclampsia part 1: current understanding of its pathophysiology. Nat Rev Nephrol 10:466–480PubMedCentralPubMedCrossRefGoogle Scholar
  4. Costantine MM, Cleary K, Hebert MF, Ahmed MS, Brown LM, Ren Z, Easterling TR, Haas DM, Haneline LS, Caritis SN, Venkataramanan R, West H, D’Alton M, Hankins G (2016) Eunice Kennedy Shriver National Institute of Child Health and Human Development Obstetric-Fetal Pharmacology Research Units Network. Safety and pharmacokinetics of pravastatin used for the prevention of preeclampsia in high-risk pregnant women: a pilot randomized controlled trial. Am J Obstet Gynecol 214(6):720.e1–720.e17CrossRefGoogle Scholar
  5. Craici I, Wagner S, Garovic VD (2008) Preeclampsia and future cardiovascular risk: formal risk factor or failed stress test? Therap Adv Cardiovasc Dis 2(4):249–259CrossRefGoogle Scholar
  6. Cruz MO et al (2012) What is the optimal time for delivery in women with gestational hypertension? Am J Obstet Gynecol 207:214.e1–214e.6CrossRefGoogle Scholar
  7. Dechend R et al (2004) AT1 receptor agonistic antibodies, hypertension, and preeclampsia. Semin Nephrol 24:571–579PubMedCrossRefGoogle Scholar
  8. Ferrer RL, Sibai BM, Multrow CD et al (2000) Management of mild chronic hypertension during pregnancy: a review. Obstet Gynecol 96:849–860PubMedGoogle Scholar
  9. Garovic VD, Hayman SR (2007) Hypertension in pregnancy: an emerging risk factor for cardiovascular disease. Nat Clin Pract Nephrol 3(11):613–622PubMedCrossRefGoogle Scholar
  10. Girouard J, Giguère Y, Moutquin JM et al (2007) Previous hypertensive disease of pregnancy is associated with alterations of markers of insulin resistance. Hypertension 49(5):1056–1062Google Scholar
  11. Goldman-Wohl D, Yagel S (2002) Regulation of trophoblast invasion: from normal implantation to pre-eclampsia. Mol Cell Endocrinol 187:233–238PubMedCrossRefGoogle Scholar
  12. Hagmann H et al (2012) The promise of angiogenic markers for the early diagnosis and prediction of preeclampsia. Clin Chem 58:837–845PubMedCrossRefGoogle Scholar
  13. Helewa ME, Burrows RF, Smith J et al (1997) Report of the Canadian hypertension society consensus conference: 1. definitions, evaluations and classification of hypertensive disorders in pregnancy. CMAJ 157:715PubMedCentralPubMedGoogle Scholar
  14. Lam C et al (2005) Circulating angiogenic factors in the pathogenesis and prediction of preeclampsia. Hypertension 46:1077–1085PubMedCrossRefGoogle Scholar
  15. Lefkou E, Mamopoulos A, Dagklis T, Vosnakis C, Rousso D, Girardi G (2016) Pravastatin improves pregnancy outcomes in obstetric antiphospholipid syndrome refractory to antithrombotic therapy. J Clin Invest 126(8):2933–2940PubMedCentralPubMedCrossRefGoogle Scholar
  16. Levine RJ et al (2004) Circulating angiogenic factors and the risk of preeclampsia. N Engl J Med 350:672–683PubMedCrossRefGoogle Scholar
  17. Levine RJ et al (2006) Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N Engl J Med 355:992–1005PubMedCrossRefGoogle Scholar
  18. Lucas MJ, Leveno KJ, Cunnningham FG (1995) A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia. N Engl J Med 333:201PubMedCrossRefGoogle Scholar
  19. Mol BWJ et al (2016) Pre-eclampsia. Lancet 387:999–1011PubMedCrossRefGoogle Scholar
  20. Poon LC, Maiz N, Valencia C, Plasencia W, Nicolaides KH (2009) First-trimester maternal serum pregnancy-associated plasma protein-A and pre-eclampsia. Ultrasound Obstet Gynecol 33(1):23–33PubMedCrossRefGoogle Scholar
  21. Roberts JM et al (2003) Summary of the NHLBI working group on research on hypertension during pregnancy. Hypertension 41:437–444PubMedCrossRefGoogle Scholar
  22. Rodie VA, Freeman DJ, Sattar N et al (2004) Preeclampsia and cardiovascular disease: metabolic syndrome of pregnancy? Atherosclerosis 175:189–202PubMedCrossRefGoogle Scholar
  23. Rolnik DL, Wright D, Poon LC et al (2017) Aspirin versus placebo in pregnancies at high risk for preterm preeclampsia. N Engl J Med 377(7):613–622PubMedCrossRefGoogle Scholar
  24. Schnettler WT et al (2013) Cost and resource implications with serum angiogenic factor estimation in the triage of pre-eclampsia. BJOG 120:1224–1232PubMedCentralPubMedCrossRefGoogle Scholar
  25. Smith GC, Pell JP, Walsh D (2001b) Pregnancy complications and maternal risk of ischaemic heart disease: a retrospective cohort study of 129,290 births. Lancet 357:2002–2006PubMedCrossRefGoogle Scholar
  26. Stepan H et al (2008) Circulatory soluble endoglin and its predictive value for preeclampsia in second-trimester pregnancies with abnormal uterine perfusion. Am J Obstet Gynecol 198:175.e1–175.e6CrossRefGoogle Scholar
  27. Thadhani R, Solomon CG (2008) Preeclampsia – a glimpse into the future? N Engl J Med 359:858–860PubMedCrossRefGoogle Scholar
  28. Thadhani R, Kisner T, Hagmann H et al (2011) Pilot study of extracorporal removal of soluble fms-like tyrosine kinase 1 in preeclampsia. Circulation 124:940–950PubMedCrossRefGoogle Scholar
  29. Thadhani R, Hagmann H, Schaarschmidt W et al (2016) Removal of soluble Fms-Like tyrosine kinase-1 by dextran sulfate apheresis in preeclampsia. J Am Soc Nephrol 27(3):903–913PubMedCrossRefGoogle Scholar
  30. Verlohren S, Dudenhausen JW (2009) Präeklampsie und hypertensive Schwangerschaftserkrankungen. Frauenheilkunde up2date 3:461–472CrossRefGoogle Scholar
  31. Verlohren S et al (2010) An automated method for the determination of the sFlt-1/PIGF ratio in the assessment of preeclampsia. Am J Obstet Gynecol 202:161.e1–161.e11CrossRefGoogle Scholar
  32. Verlohren S et al (2012) The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am J Obstet Gynecol 206(1):58.e1–8CrossRefGoogle Scholar
  33. Vikse BE, Irgens LM, Leivestad T et al (2008) Preeclampsia and the risk of end-stage renal disease. N Engl J Med 359:800–809PubMedCrossRefGoogle Scholar
  34. Woudstra DM, Chandra S, Hofmeyr GJ, Dowswell T (2010) Corticosteroids for HELLP (hemolysis, elevated liver enzymes, low platelets) syndrome in pregnancy. Cochrane Database Syst Rev: Sep 8(9):CD008148.  https://doi.org/10.1002/14651858.CD008148.pub2
  35. Zeisler et al (2016) Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. NEJM 374:13PubMedCrossRefGoogle Scholar
  36. Zhou Y et al (1997) Human cytotrophoblasts adopt a vascular phenotype as they differentiate. A strategy for successful endovascular invasion? Clin Invest 99:2152–2164CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Berthold Huppertz
    • 1
  • Ulrich Pecks
    • 2
  • Holger Stepan
    • 3
  1. 1.Lehrstuhl für Zellbiologie, Histologie und EmbryologieGottfried Schatz Forschungszentrum, Medizinische Universität GrazGrazÖsterreich
  2. 2.Klinik für Gynäkologie und GeburtshilfeUniversitätsklinikum Schleswig-Holstein Campus KielKielDeutschland
  3. 3.Klinik für GeburtsmedizinUniversitätsklinikum LeipzigLeipzigDeutschland

Personalised recommendations