Advertisement

Atoms with More Than One Electron

  • Wolfgang DemtröderEmail author
Chapter
Part of the Graduate Texts in Physics book series (GTP)

Abstract

In atoms with more than one electron additional problems arise that are caused by mutual electrostatic and magnetic interactions between the electrons. In addition, we are now confronted with new symmetry principles that are valid if two electrons are exchanged. These stem from the fact that electrons cannot be distinguished from each other.

References

  1. 1.
    W. Meyer, Kaiserslautern, private communication E.R. Davidson: Single-Configuration Calculations of Excited States of Helium. J. Chem. Phys. 42, 4199 (1965)CrossRefGoogle Scholar
  2. 2.
    J. Emsley: Nature’s Building blocks: The Elements (Oxford Univ. Press, Oxford 2011) S. Fraga: Handbook of Atomic Data (Elsevier Science, Amsterdam 1977)Google Scholar
  3. 3.
    P.S. Krstic, F. Ownby, D.R. Schultz (eds.), Atomic and Molecular Data and their Applications, Conference Proceedings, Gatlinburg 2002 (Am. Inst. of Physics, New York, 2002)Google Scholar
  4. 4.
    H. Friedrich, Theoretical Atomic Physics, 2nd edn. (Springer, Berlin, Heidelberg, 2002)zbMATHGoogle Scholar
  5. 5.
    T.F. Gallagher, Rydberg Atoms (Cambridge Univ. Press, Cambridge, 1994)CrossRefGoogle Scholar
  6. 6.
    I.C. Percival, Planetory Atoms. Proc. Royal Soc. London A 353, 289 (1977)ADSCrossRefGoogle Scholar
  7. 7.
    J. Boulmer, P. Camus, P. Pillet, Double Rydberg spectroscopy of the barium atom. J. Opt. Soc. Am. B 4, 805 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    B. Laus et al., X-ray emission during the muonic cascade in H. Phys. Rev. Lett 80, 3041 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    L. Willmann, K. Jungmann, The Muonium Atom as a probe of Physics beyond the Standard Model. Lecture Notes in Physics 499, 49 (1997)ADSGoogle Scholar
  10. 10.
    G. Backenstoß: Antiprotonic Atoms. In: Atomic Phys. 10, 147 (North Holland Publ. Comp., Amsterdam 1987)Google Scholar
  11. 11.
    St. Chu: Laser Spectroscopy of Positronium and Myonium, In: G.F. Bassani, M. Inguscio, T.W. Hänsch (eds.): The Hydrogen Atom, p. 114 (Springer, Berlin, Heidelberg 1989)Google Scholar
  12. 12.
    L.M. Simons (ed.): Electromagnetic Cascade and Chemistry of Exotic Atoms. Ettore Majorana Center, Science Series Vol. 52 (Plenum Publ., New York 1991)Google Scholar
  13. 13.
    D. Gotta et al., Nucl. Phys. A 660, 283 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    M. Hori et al., Observation of Cold Long-Lived Antiprotonic Helium Ions. Phys. Rev. Lett. 94, 063401 (2005) T. Yamazati et al.: Antiprotonic Helium. Physics Reports 366, 183 (2002)CrossRefGoogle Scholar
  15. 15.
    G. Gabrielse et al., Background-Free Observation of Cold Anti-Hydrogen. Phys. Rev. Lett. 89, 213401 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J.L. Basdevant, J. Dalibart: The Spectrum of Positronium, In: The Quantum Mechanics Solver. (Springer, Berlin, Heidelberg 2000); R.S. Vallery et al.: Phys. Rev. Lett. 90, 203402 (2003)Google Scholar
  17. 17.
    V.W. Hughes: Recent Advances in Myonium, In: G.F. Bassani, M. Inguscio, T.W. Hänsch (eds.): The Hydrogen Atom (Springer 1989)Google Scholar
  18. 18.
    F.E. Maas et al., A measurement of the 1\(S\)-2\(S\) transition frequency in muonium. Phys. Lett. A 187, 247 (1994)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations