Development of Quantum Physics

  • Wolfgang DemtröderEmail author
Part of the Graduate Texts in Physics book series (GTP)


At the beginning of the 20th century several experimental findings could not be explained by the existing theories of the time, which we will name “classical physics”. These experiments indicated that the conception of classical physics had to be modified. Examples are the measured spectral distribution of radiation from black bodies, which was in disagreement with theoretical predictions, the photo effect, the explanation of the Compton effect and a satisfactory answer to the question of why atoms in their lowest energetic state are stable.


  1. 1.
    I. Newton, Philosophiae Naturalis Principia Mathematica (London, 1686); and Optics, a Treatise of the Reflexion, Inflexion and Colours of Light (London, 1704)Google Scholar
  2. 2.
    C.S. Huygens, Traité de la lumiére (Paris, 1676); (see: The New Encyclopadia Britannica)Google Scholar
  3. 3.
    M. Planck, Physikalische Abhandlungen und Vorträge, Bd. 1–3 (Vieweg, Braunschweig, 1958); M. Planck, Über das Gesetz der Energieverteilung im Normalspektrum. Ann. Phys. 4, 553 (1901)CrossRefGoogle Scholar
  4. 4.
    see also: J. Mehra, H. Rechenberg, The Historical Development of Quantum Mechanics (Springer, Berlin, 1982–2000)Google Scholar
  5. 5.
    R.A. Millikan, A direct photoelectric determination of Planck’s \(h\). Phys. Rev. 7, 355 (1916)ADSCrossRefGoogle Scholar
  6. 6.
    see for instance: J. Mehra, The Solvay Conferences in Physics (D. Riedel, Dordrecht, 1975)Google Scholar
  7. 7.
    R.V. Pound, G.A. Rebka, Apparent weight of photons. Phys. Rev. Lett. 4, 337 (1960)ADSCrossRefGoogle Scholar
  8. 8.
    J.L. Snider, New measurements of the solar gravitational redshift. Phys. Rev. Lett. 28, 853 (1972)ADSCrossRefGoogle Scholar
  9. 9.
    L. de Broglie, Ondes et corpiseiles (Hermann, Paris, 1930)Google Scholar
  10. 10.
    C.S. Adams, M. Siegel, J. Mlynek, Atom optics. Phys. Rep. 240, 145 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    P. Meystre, Atom Optics (Springer, Berlin, 2001)CrossRefGoogle Scholar
  12. 12.
    V. Bonse, Recent advances in X-ray and neutron interferometry. Phys. B 151, 7 (1988)CrossRefGoogle Scholar
  13. 13.
    P.R. Berman (ed.), Atomic Interferometry (Academic, New York, 1996)Google Scholar
  14. 14.
    S.A. Werner, H. Rauch, Neutron Interferometry (Oxford University Press, Oxford, 2000)Google Scholar
  15. 15.
    V.F. Sears, Neutron Optics (Oxford University Press, 1998)Google Scholar
  16. 16.
    M. Born, R.J. Blin-Stoyle, J.M. Radcliffe, Atomic Physics, 8th edn. (Dover Publications, Mineola, 1989)Google Scholar
  17. 17.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, vol. I (Wiley, New York)Google Scholar
  18. 18.
    L. Rosenfeld (ed.), Nils Bohr’s Collected Work (1972-...) Nils Bohr: On the Quantum Theory of Line Spectra. Kgl. Dan. Vid. Selsk. Skr. Nat. Mat. Atd Series 8, 4, 1–118 (1918)Google Scholar
  19. 19.
    J. Franck, G. Hertz, Über Zusammenstöße zwischen Gasmolekülen und langsamen Elektronen. Verband der deutschen Physikal. Gesellschaft 15, 373 (1913); see also: J. Mehra, H. Rechenberg, The Historical Development of Quantum Mechanics (Springer, Berlin, 1982–2000)Google Scholar
  20. 20.
    G.F. Hanne, What really happens in the Franck-Hertz experiment with mercury? Am. J. Phys. 56, 698 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    A. Arimondo, W.D. Phillips, F. Strumia (eds.), Laser Manipulation of Atoms and Ions (North Holland Publishing, Amsterdam, 1992)Google Scholar
  22. 22.
    J. Levine, Early Gravitational Wave Detection Experiments: Physics in Perspective (Birkhausen, Basel, 2004), pp. 42–75Google Scholar
  23. 23.
    B.P. Abbott et al., GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett 116, 241103 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    St. Dürr, G. Rempe, Wave-Particle Duality in an Atom Interferometer. Advances in Atomic, Molecular and Optical Physics, vol. 41 (1999)Google Scholar
  25. 25.
    H. Paul, Introduction Quantum Optics From Light Quanta to Teleportation (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  26. 26.
    M.O. Scully, B.G. Englert, H. Walther, Quantum optical tests of complementary. Nature 351, 111 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    W. Schleich, Quantum Optics in Phase Space (Wiley VCH, Weinheim, 2001)CrossRefGoogle Scholar
  28. 28.
    M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997); Chr. Gerry, P. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2004)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations