Modern Developments in Atomic and Molecular Physics

  • Wolfgang DemtröderEmail author
Part of the Graduate Texts in Physics book series (GTP)


Over the last few years, several very interesting new developments in atomic and molecular physics were initiated that have considerably widened our understanding of the interaction of light with matter and opened new possibilities for many applications. In this chapter we will briefly discuss some of the experiments that have pushed forward these developments.


  1. 1.
    T.W. Hänsch, A.L. Schawlow, Cooling of gases by laser radiation. Opt. Commun. 13, 68 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    D. Sesko, C.G. Fam, C.E. Wieman, Production of a cold atomic vapor using diode-laser cooling. J. Opt. Soc. Am. B 5, 1225 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    J. Dalibard, C. Cohen-Tannoudji, Laser cooling below the Doppler-limit by polarization gradients: simple theoretical model. J. Opt. Soc. Am. B 6, 2023 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    A. Arimondo, W.D. Phillips, F. Strumia (eds.), Laser Manipulation of Atoms and Ions (North Holland Publishing Company, Amsterdam, 1992)Google Scholar
  5. 5.
    H. Katori et al., Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82(6), 1116 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    H.I. Metcalf, P. van der Straaten, Laser Cooling and Trapping (Springer, Berlin, 1999)CrossRefGoogle Scholar
  7. 7.
    K. Sengstock, W. Ertmer, Laser manipulation of atoms. Adv. At. Mol. Opt. Phys. 35, 1 (1995)ADSCrossRefGoogle Scholar
  8. 8.
    S.N. Bose, Planck’s Gesetz und Lichtquanten-hypothese, Z. Physik 26, 178 (1924); A. Einstein, Sitz. Berichte Preuss. Akademie Berlin 22, 261 (1924)Google Scholar
  9. 9.
    M.H. Andersen, J.R. Ensher, M.R. Matthews, C.E. Wieman, E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic gas. Science 269, 198 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    K.B. Davis, M.O. Mewes, M.A. Joffe, M.R. Andrews, W. Ketterle, Evaporative cooling of sodium atoms. Phys. Rev. Lett. 74, 5202 (1995)ADSCrossRefGoogle Scholar
  11. 11.
    W. Ketterle, N.J. van Druten, Evaporative cooling of trapped atoms. Adv. At. Mol. Opt. Phys. 37, 181 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    Ch. Becker, Multicomponent Bose Einstein Condensates Dr. Hut Verlag München (2009)Google Scholar
  13. 13.
    M. Ueda, Fundamentals and New Frontiers of Bose-Einstein Condensation (World Scientific Publishing 2010)Google Scholar
  14. 14.
    S. Jochim, M. Bartenstein, R. Grimm, Bose–Einstein Condensation of Molecules, Science Express 13. November 2003/Science 1093280; and: Physics Today, October 2003Google Scholar
  15. 15.
    A. Griffin, D.W. Snoke, S. Stringari (eds.), Bose-Einstein Condensation (Cambridge University Press, Cambridge, 1995)Google Scholar
  16. 16.
    S. Martelucci (ed.), Bose-Einstein Condensates and Atom Laser (Kluwer Academic Publishers, New York, 2000)Google Scholar
  17. 17.
    P. Bermann (ed.), Atom Interferometry (Academic Press, San Diego 1997); A. Widera, Th.W. Hänsch et al., Measurements of atomic scattering properties. Phys. Rev. Lett. 92, 160406-1 (2004)Google Scholar
  18. 18.
    M. A. Kasevich; et al., “Atomic fountains and clocks". Optics (1989)Google Scholar
  19. 19.
    A. Aspect et al., Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61(7), 826 (1988)ADSCrossRefGoogle Scholar
  20. 20.
    W.C. Stwalley, K.-H. Uang, Pure Long Range molecules. Phys. Rev. Lett. 41, 1164 (1978)ADSCrossRefGoogle Scholar
  21. 21.
    C. Chin, Observation of Feshbach-like resonances in collisions between ultracold molecules. Phys. Rev. Lett. 94, 123201 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    M. Mark, T. Kraemer, J. Harbig, C. Chin, H.C. Nägerl, R. Grimm, Efficient creation of molecules from a cesium Bose-Einstein condensate. Europhys. Lett. 69, 706 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Quantum Physe transitions from a Supere fluid to a Mott insulator in a gas of ultra cold atoms: nature 415(6867), 39–44 (2002)Google Scholar
  24. 24.
    I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultra cold gases. Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    I. Bloch, Ultracold atoms in optical lattices. Nature Phys. 1,2,3 mn(beam)Google Scholar
  26. 26.
    T. Baumert, M. Grosser, R. Thalweiler, G. Gerber, Femtosecond time-resolved molecular photoionisation: The \({\rm {Na}}_{2}\)-System. Phys. Rev. Lett. 67, 3753 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    E. Schreiber, Femtosecond Real Time Spectroscopy of Small Molecules and Clusters (Springer, Berlin, 1998)Google Scholar
  28. 28.
    A.H. Zewail, Femtochemistry (World Scientific, Singapore, 1994)Google Scholar
  29. 29.
    M. Shapiro, P. Brummer, Coherent control of atomic, molecular and electronic processes. Adv. At. Mol. Opt. Phys. 42, 287 (2000)ADSCrossRefGoogle Scholar
  30. 30.
    A. Assion, G. Gerber, Control of chemical reactions by feedback-optimized phase shaped femtosecond laser pulses. Science 282, 119 (1998)CrossRefGoogle Scholar
  31. 31.
    T. Brixner, N.H. Damrauer, G. Gerber, Femtosecond quantum control. Adv. At. Mol. Opt. Phys. 46, 1–56 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    A. Rice, M. Zhao, Optical Control of Molecular Dynamics (Wiley, New York, 2000)Google Scholar
  33. 33.
    D. Zeidler, S. Frey, K.L. Kompa, M. Motzkus, Evolutionary algorithm and their applications to optimal control studies. Phys. Rev. A 64, 023420 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    J. Reichert, T.W. Hänsch, Phase coherent vacuum ultraviolet to radiofrequency comparison with a mode-locked laser. Phys. Rev. Lett. 84, 3232 (2000); S.A. Didamus, T.W. Hänsch, Direct link between microwave and optical frequencies with a 300 THz femtosecond pulse. Phys. Rev. Lett. 84, 5102 (2000); Th. Udem, R. Holzwarth, T.W. Hänsch, Optical frequency metrology. Nature 416, 233 (2002)CrossRefGoogle Scholar
  35. 35.
    N. Kolchevsky, M. Fischer, S.G. Karshenboim, T.W. Hänsch, High precision optical measurement of the 2S Hyperfine-interval in atomic hydrogen. Phys. Rev. Lett. 92, 033003 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    S.G. Karshenboim, et al. (eds.), The Hydrogen Atom (Precision Physics of Simple Atomic Systems (Springer, Berlin, 2001)Google Scholar
  37. 37.
    S.A. Didamus et al., An optical clock based on a single trapped \(^{199}{\rm {Hg}}^{+}\)-Ion. Science 293, 825 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    T. Sauter, R. Blatt, W. Neuhauser, P.E. Toschek, Quantum jumps in a single ion. Phys. Scr. 22, 128 (1988)CrossRefGoogle Scholar
  39. 39.
    R. Blümel, W. Walther, Phase transitions of stored laser-cooled ions. Nature 334, 309 (1988)ADSCrossRefGoogle Scholar
  40. 40.
    J. Javamainen, Laser cooling of trapped ion-clusters. J. Opt. Soc. Am. B 5, 73 (1988)ADSCrossRefGoogle Scholar
  41. 41.
    R. Th Udem, Holzwarth, Th Hänsch, Femtosecond Optical Frequency Combs. Eur. Phys. J. Special Topics 172, 69 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    Th Udem, Frequency Comb Benefits Nature Photonics 3, 82 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    Th. Udem, M. Zimmermann, R. Holzwarth, M. Fischer, N. Kolachevsky, Th. Hansch, Optical Frequency Measurement: Femto second Optical Frequency Comb: Principle, Operation and Applications, ed. by J. Ye, S. T. Cundiff (Springer, Berlin, 2005), p. 176Google Scholar
  44. 44.
    H.A. Bachor, A Guide to Experiments in Quantum Optics, 2nd edn. (Wiley VCH, Weinheim, 2004); H. Paul, Introduction to Quantum Optics. From Light Quanta to Quantum Teleportation (Cambridge University Press, Cambridge, 2004)Google Scholar
  45. 45.
    P.R. Saulson, Fundamentals of Interferometric Gravitational Wave Detectors, 2nd edn. (World Scientific, Singapore, 2017)CrossRefGoogle Scholar
  46. 46.
    Abbott, Benjamin P et al., (LIGO Scientific Collaboration and Virgo Collaboration) (2016). “Properties of the binary black hole merger GW150914". Physical Review Letters. 116 (24): 241102. arXiv:1602.03840
  47. 47.
    C. Affeldt, K. Danzmann, K.L. Dooley, H. Grote, M. Hewitson, S. Hild, J. Hough, J. Leong, H. Lück, M. Prijatelj, Advanced techniques in GEO 600. Class. Quantum Grav. 31, 224002 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    F. Seifert, P. Kwee, M. Heurs, B. Wilke, K. Danzmann, Laser Power Stabilization for second generation gravitational wave detectors. Opt. Lett. 31, 2000 (2006)ADSCrossRefGoogle Scholar
  49. 49.
  50. 50.
    G. Augner, E. Plagnol, Introduction to the Detection of Gravitational Waves with Ground- and Space-Based Detectors (World Scientific Publishing, 2017)Google Scholar
  51. 51.
    D.G. Blair, E.J. Howell, Advanced Gravitational Wave Detectors (Cambridge University Press 2012)Google Scholar
  52. 52.
    B. Bhawal, Physics of interferometric gravitational wave detectors. Pramana J. Phys. 63, 645 (1994)ADSCrossRefGoogle Scholar
  53. 53.
    LISA: www. International Technology Education Association: The Technology Teacher (2004)Google Scholar
  54. 54.
    St. Dürr, G. Rempe, Wave-particle duality in an atom interferometer. Adv. At. Mol. Opt. Phys. 41 (1999)Google Scholar
  55. 55.
    J.S. Bell, A. Aspect, Speakable and Unspeakable in Quantum Mechanics, Collected Papers on Quantum Philosophy (Cambridge University Press, Cambridge, 2004)CrossRefGoogle Scholar
  56. 56.
    J.S. Bell, On the Einstein-Rosen-Podolsky-Paradox. Physics 1, 195 (1964); A. Afriat, The Einstein-Podolsky-Rosen-Paradox (Plenum Press, New York, 1998)Google Scholar
  57. 57.
    A. Aspect, P. Grangier, G. Roger, Experimental Tests of Bell’s inequality using timer-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)ADSMathSciNetCrossRefGoogle Scholar
  58. 58.
    A. Afriat, F. Sellen, The Einstein-Rosen-Podolsky Paradox in Atomic, Nuclear and Particle Physics (Plenum Press, New York, 1999)CrossRefGoogle Scholar
  59. 59.
    S. Haroche, M. Brune, J.M. Raimond, Schrödinger cats and entanglement experiments in cavity QED, in Laser Spectroscopy XIII, ed. by Zhi-jiang Wang (Singapore, Zhi-ming Zhang and Yu-zhu Wang (World Scientific, 1998)Google Scholar
  60. 60.
    D. Bouwmeester, A. Ekert, A. Zeilinger (eds.), The Physics of Quantum Information, 3rd Printing (Springer, Berlin, 2001)Google Scholar
  61. 61.
    C.P. Williams, S.H. Clearwater, Explanations in Quantum Computing (Springer, Berlin, 1997)zbMATHGoogle Scholar
  62. 62.
    J. Preskill, Lecture Notes on Quantum Computing, home page Ph219/CS219; D (A (Quantum Computation. Phys. World, Deutsch, Ekert, March 1998)Google Scholar
  63. 63.
    J.I. Cirac, P. Zoller, J.F. Poyatos, Quantum gates and quantum computation with trapped ions, in The Physics of Quantum Information, ed. by D. Bouwmeester, A. Ekert, A. Zeilinger (Springer, Berlin, 2001)Google Scholar
  64. 64.
    T. Monz, K. Kim, W. Hänsel, M. Riebe, A.S. Villar, P. Schindler, M. Chwalla, M. Hennrich, R. Blatt, Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009). arXiv:0804.0082ADSCrossRefGoogle Scholar
  65. 65.
    M. Mohan, M. ed. New Trends in Atomic and Molecular Physics. Springer Series on Atomic, Optical and Plasma Physics, vol. 76 (Springer, 2013)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität KaiserslauternKaiserslauternGermany

Personalised recommendations