Knowledge-Based Production Planning for Industry 4.0

  • Benjamin Gernhardt
  • Tobias Vogel
  • Matthias Hemmje
Chapter

Abstract

Today and tomorrow – in the era of Digital Production Environments and Industry 4.0 – the production planning and manufacturing of a new product takes place in various partial steps, mostly in different locations, potentially distributed all over the world. In this application context, a Collaborative Adaptive Production Process Planning can be supported by semantic product data management approaches enabling production-knowledge representation and management as well as knowledge sharing, access, and reuse in a flexible and efficient way. To support such scenarios, semantic representations of production-knowledge integrated into a machine-readable process formalization is a key enabling factor for sharing such explicit knowledge resources in cloud-based knowledge repositories. We will introduce such a method and provide a corresponding prototypical Proof-of-Concept implementation called Knowledge-Based Production Planning (KPP).

Furthermore, the ProSTEP iViP Association recently published a White Paper entitled “Modern Production Planning Processes” that is based on the currently emerging ISO/DIS 18828-2 Standard. This recommendation represents a formal end-to-end reference process that can be adapted to individual needs, the so-called Reference Planning Process (RPP).

In this chapter, we will explain KPP in detail. Further, as a basis for evaluation and validation, we use the KPP approach as a possible reference implementation of RPP. We will also demonstrate the usability and interoperability of the Proof-of-Concept implementation of KPP. This includes an integrated visually direct manipulative process editor. Moreover, we will illustrate the first prototype of the KPP Mediator Architecture including a user-friendly query library based on the KPP ontology.

References

  1. 1.
    Wiederhold G (1992) Mediators in the Architecture of Future Information Systems. The IEEE Computer Magazine, 25(3):38–49CrossRefGoogle Scholar
  2. 2.
    Miltner F, Vogel T, Hemmje M (2014) Towards knowledge based process planning support for CAPP-4-SMEs: problem description, relevant state of the art and proposed approach ASME 2014 International Manufacturing Science and Engineering Conference (MSEC) Research Conference, Vol. 1 - Detroit, Michigan, USA, June 9–13, 2014Google Scholar
  3. 3.
    Wang L, Feng HY, Cai N (2003) Architecture design for distributed process planning. J Manuf Syst 22:99–115CrossRefGoogle Scholar
  4. 4.
    International Organization for Standardization (2011) ISO International Standard 10303-210:2011 Industrial automation systems and integration – product data representation and exchange – part 210: application protocol: electronic assembly, interconnected and packaging design. 2011, Geneva, SwitzerlandGoogle Scholar
  5. 5.
    Vogel T (2012) Wissensbasiertes und Prozessorientiertes Innovationsmanagement WPIM – Innovationsszenarien, Anforderungen, Modell und Methode, Implementierung und Evaluierung anhand der Innovationsfähigkeit fertigender Unternehmen, Dissertation, HagenGoogle Scholar
  6. 6.
    Wang L, Adamson G, Holm M, Moore P (2012) A review of function blocks for process planning and control of manufacturing equipment. J Manuf Syst 31(3):269–279CrossRefGoogle Scholar
  7. 7.
    Wang L, Jin W, Feng HY (2006) Embedding machining features in function blocks for distributed process planning. Int J Comput Integr Manuf 19:443–452CrossRefGoogle Scholar
  8. 8.
    International Organization for Standardization (2016) ISO International Standard 18828-2:2016 Industrial automation systems and integration – standardized procedures for production systems engineering – part 2: reference process for seamless production planning. 2016, Geneva, SwitzerlandGoogle Scholar
  9. 9.
    ProSTEP iViP Association e.V. https://www.prostep.org
  10. 10.
    Recommendation – Reference process for production planning PSI8, ProSTEP iVIP, March 2013. http://www.prostep.org/en/medialibrary/publications/recommendations-standards.html
  11. 11.
    Gernhardt B, Vogel T, Givehchi M, Wang L, Hemmje M (2015) Supporting production planning through semantic mediation of processing functionality, vol 1. International Conference on Innovative Design and Manufacturing (ICIDM), AucklandGoogle Scholar
  12. 12.
    International Electrotechnical Commission (2005) IEC 61499-1 Function blocks – part 1: architecture. 2005, Geneva, SwitzerlandGoogle Scholar
  13. 13.
    Lewis R (2001) Modelling control systems using IEC 61499 – applying function blocks to distributed systems. The Institution of Electrical Engineers, London. ISBN: 0852976 796CrossRefGoogle Scholar
  14. 14.
    International Electrotechnical Commission (2003) IEC 61131-3 Programmable controllers – part 3: programming languages. 2003 Geneva, SwitzerlandGoogle Scholar
  15. 15.
    Vogel T, Hemmje M (2006) Auf dem Weg zu einem Wissens-basierten und Prozess-orientierten Innovationsmanagement (WPIM) – Innovationsszenarien, Anforderungen und Modellbildung. In: KnowTech 2006. CMP-WEKA-Verlag, PoingGoogle Scholar
  16. 16.
    Cyganiak R, Wood D, Lanthaler M, Klyne G, Carroll J, McBride B (2014) RDF 1.1 concepts and abstract syntax. W3C Recommendation 25 February 2014, World Wide Web Consortium (W3C). http://www.w3.org/TR/rdf11-concepts/. Last accessed 13 Nov 2014
  17. 17.
    SPARQL Query Language for RDF (2008) World Wide Web Consortium (W3C), 15 January 2008. Last accessed 2 Nov 2016Google Scholar
  18. 18.
    W3C OWL Working Group (2012) OWL 2 web ontology language document overview, 2nd edn. W3C Recommendation 11 December 2012, World Wide Web Consortium (W3C). http://www.w3.org/TR/owl2-overview/. Last accessed 13 Nov 2014
  19. 19.
    W3C (2004) OWL web ontology language overview. World Wide Web Consortium, 10 February 2004. [Online]. http://www.w3.org/TR/owl-features/. Accessed 14 Nov 2013
  20. 20.
    Ludäscher B, Lin K, Brodaric B, Baru C (2003) GEON: toward a cyberinfrastructure for the geosciences – a prototype for geologic map integration via domain ontologies. In: Digital mapping techniques ‘03 – workshop proceedings, U.S. Geological Survey open-file report 03–471Google Scholar
  21. 21.
    Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F (2008) Extensible markup language (XML) 1.0, 5th edn. W3C Recommendation 26 November 2008, World Wide Web Consortium (W3C). http://www.w3.org/TR/REC-xml/
  22. 22.
    Melton J (2011) ISO/IEC FDIS 9075-1 Information technology – database languages – SQL – part 1: framework (SQL/Framework), ISO Draft International Standard, ISO/IEC JTC 1/SC 32 Data management and interchange. http://www.jtc1sc32.org/doc/N2151-2200/32N2153T-text_for_ballot-FDIS_9075-1.pdf. Last accessed 13 Nov 2014
  23. 23.
    Robie J, Chamberlin D, Dyck M Snelson J (2014) XQuery 3.0: an XML query language. W3C Recommendation 08 April 2014, World Wide Web Consortium (W3C). http://www.w3.org/TR/xquery-30/
  24. 24.
    Motik B, Cuenca Grau B, Horrocks I, Wu Z, Fokoue A, Lutz C (2012) OWL 2 web ontology language profiles, 2nd edn. W3C Recommendation 11 December 2012, World Wide Web Consortium (W3C). http://www.w3.org/TR/owl2-profiles/. Last accessed 13 Nov 2014
  25. 25.
    Lu Y, Xu X (2015) Process and production planning in a cloud manufacturing environment. ASME 2015 International Manufacturing Science and Engineering Conference, Charlotte. MSEC2015-9382CrossRefGoogle Scholar
  26. 26.
    Givehchi M, Schmidth B, Wang L (2013) Knowledge-based operation planning and machine control by function blocks in Web-DPP. Flexible Automation and Intelligent Manufacturing (FAIM), PortoCrossRefGoogle Scholar
  27. 27.
    Binh Vu D (2015) Realizing an applied gaming ecosystem – extending an education portal suite towards an ecosystem portal. Master thesis, Technische Universität Darmstadt, DarmstadtGoogle Scholar
  28. 28.
    Givehchi M, Haghighi A, Wang L (2015) Paper: Generic machining process sequencing through a revised enriched machining feature concept. Journal of Manufacturing Systems, Vol. 37, Part 2, October 2015, Pages 564-575CrossRefGoogle Scholar
  29. 29.
    Fielding RT (2000) Architectural Styles and the Design of Network-based Software Architectures, University of California, Irvine, CA, USAGoogle Scholar
  30. 30.
    Kossick J (2016) Reimplementierung, Erweiterung und exemplarische Evaluation einer verteilten und kollaborativen Unterstützung für die Produktionsplanung – Translation – Reimplementation, expansion and evaluation of a distributed and collaborative support for a production planning. Bachelor thesis, University of Hagen, HagenGoogle Scholar
  31. 31.
    Prud’hommeaux E (2004) Optimal RDF access to relational databases. W3C. https://www.w3.org/2004/04/30-RDF-RDB-access/. Last accessed 29 Oct 2016
  32. 32.
    Visual Paradigm. Business process model and notation – diagram & tools. Hong Kong. https://www.visual-paradigm.com/features/bpmn-diagram-and-tools/. Last accessed 18 Oct 2016
  33. 33.
    Object Management Group (ed) (2015) OMG Unified Modeling Language (OMG UML) Version 2.5. OMG. http://www.omg.org/spec/UML/2.5/PDF/. Last accessed 27 Oct 2016
  34. 34.
    camunda Services GmbH (2013), BPMN-JS - a web-based toolkit for BPMN modeling. Est. 2013, Berlin, Germany. https://bpmn.io/toolkit/bpmn-js/. Last accessed 17 Mar 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Benjamin Gernhardt
    • 1
  • Tobias Vogel
    • 1
  • Matthias Hemmje
    • 1
  1. 1.University of HagenHagenGermany

Personalised recommendations