Ver- und Entsorgung von Reinstmedien

  • Andreas NeuberEmail author
Part of the VDI-Buch book series (VDI-BUCH)


Die Reinstmedientechnik als Teilgebiet der Reinraumtechnik und der Prozessver- und -entsorgungstechnik beschäftigt sich mit der Ver- und Entsorgung von Prozessgeräten mit Prozessmedien hoher und höchster Reinheit, einschließlich des Recyclings und anderweitiger Wiedernutzbarmachung von Ressourcen.


  1. [1]
    SEMI S2: Safety Guidelines for Semiconductor Manufacturing Equipment. SEMI, Mountain View (2010)Google Scholar
  2. [2]
    SEMI S8: Safety Guidelines for Ergonomics Human Factors Engineering of Semiconductor, Manufacturing Equipment. SEMI, Mountain View (2008)Google Scholar
  3. [3]
    Qualität, Erzeugung und Verteilung von Reinstwasser, VDI 2083, Blatt 9. VDI, Berlin (2009)Google Scholar
  4. [4]
    Chang, C.Y., Sze, S.M.: ULSI Technology. McGraw Hill International, New York (1996)Google Scholar
  5. [5]
    Neuhaus, D.-H., Münzer, A.: Industrial Silicon Wafer Solar Cells. Hindawi Publishing Corporation, Advances in OptoElectronics, Volume 2007, Article ID 24521 (2007)Google Scholar
  6. [6]
    International Technology Roadmap for Semiconductors (ITRS), International Sematech.
  7. [7]
    Litchby, M., Schoeb, R.: Effect of Particle Size Distribution on Filter Lifetime in Three Slurry Pump Systems. MRS Spring Meeting, San Francisco (2005)Google Scholar
  8. [8]
    SEMI E10: Specification for Definition and Measurement of Equipment Reliability, Availability, and Maintainability (RAM). SEMI, Mountain ViewGoogle Scholar
  9. [9]
    Slava Libman, Scott Anderson: Advanced Analytical Methods for Particle Control in the Wafer Environment. UPW ITRS, SEMI, and Balazs Experiences, SPCC Conference (2015)Google Scholar
  10. [10]
    Blackford, D., Van Schooneveld, G.: Verifying the Calibration of Optical Particle Counters below 100 nm. UPW Conference, Phoenix (2010)Google Scholar
  11. [11]
    Van Schooneveld, G., Litchy, M.R., Donald, C.: Grant: A New Method for Determining the Size Distribution of Particles in CMP SLURRIES. ICPT Conference 2010Google Scholar
  12. [12]
    NFPA 318: Protection of Cleanroom. NFPA, QuincyGoogle Scholar
  13. [13]
    SEMI F41: Guide for Qualification of a Bulk Chemical Distribution System Used in Semiconductor Processing. SEMI, Mountain ViewGoogle Scholar
  14. [14]
    Weber, D.K.: Gas contamination in semiconductor processes. 3rd European SAES Pure gas workshop, Siemens AG, Munich (1992)Google Scholar
  15. [15]
    Yao, J., Olsen, E., Seymour, A., Torres, R., Leonarduzzi, G., Raynor, M.: Minimize Silicon Trench Etch Process Variations with Optimized Cylinder Materials for Hydrogen Bromide Delivery, Solid State Technology, November 2010Google Scholar
  16. [16]
    Nakajima, D., Tamura, M., Hishinuma, K.: Argon Gas Recovery and Purification Technology. Ultraclean Technol. J./UCT. 11(3), 176–179 (1999)Google Scholar
  17. [17]
    SEMI E49.8: Guide for high purity gas distribution systems in semiconductor manufacturing equipment. SEMI, Mountain ViewGoogle Scholar
  18. [18]
    Murakami, Y.: Industrial Gas Recovery and Recycling System in Semiconductor Industry. Ultraclean Technol. J./UCT. 11(5), 296–299 (1999)Google Scholar
  19. [19]
    SEMI F14: Guide for the Design of Gas Source Control Equipment Enclosures. SEMI, Mountain ViewGoogle Scholar
  20. [20]
    SEMI S5: Safety Guidelines for Flow Limiting Devices. SEMI, Mountain ViewGoogle Scholar
  21. [21]
    SEMI F13: Guide for Gas Source Control Equipment. SEMI, Mountain ViewGoogle Scholar
  22. [22]
    SEMI S4: Safety Guidelines for the Segregation/Separation of Gas Cylinders Contained in Cabinets. SEMI, Mountain ViewGoogle Scholar
  23. [23]
    Toxic Gas Ordinance. Santa ClaraGoogle Scholar
  24. [24]
    Saleem, M., Phuong, E., Krishnan, S.: Improved Contamination Control Through Use of Passivated Surfaces for Gas and Liquid Delivery for Semiconductor Processing, Symposium on Contamination-Free Manufacturing (CFM) for Semiconductor Processing. Semicon West, San Francisco (1999)Google Scholar
  25. [25]
    SEMI F6: Guide for Secondary Containment of Hazardous Gas Piping Systems. SEMI, Mountain ViewGoogle Scholar
  26. [26]
    SEMI F1: Specification for Leak Integrity of High-Purity Gas Piping Systems and Components. SEMI, Mountain ViewGoogle Scholar
  27. [27]
    Uehara, T.: Energy saving at 300 mm Fab. Semicon Japan, Energy Efficiency Seminar (2009)Google Scholar
  28. [28]
    Dilly, P.: Trinkwasserverordnung, Leitfaden zur Verordnung über Trinkwasser und über Wasser für Lebensmittelbetriebe. Wiss.Verl.-Ges., Stuttgart (1992)Google Scholar
  29. [29]
    Frisch, M., Montalvo, M.: Wastes to Riches: An Environmental Performance Success Story at Spansion. ISMI Manufacturing Week, Austin, October 2007Google Scholar
  30. [30]
    SEMI F5: Guide for Gaseous Effluent Handling. SEMI, Mountain ViewGoogle Scholar
  31. [31]
    Selby, S.: Sustainability Improvement for Ion Implant Modules: Energy and Capex Savings Opportunities with Reduced Risk Gas Packaging. IHTESH, Taiwan (2010)Google Scholar
  32. [32]
    SEMI E49.6: Guide for Subsystem Assembly and Testing Procedures – Stainless Steel Systems. SEMI, Mountain ViewGoogle Scholar
  33. [33]
    SEMI E49.7: Guide for Subsystem Assembly and Testing Procedures – Polymer Systems. SEMI, Mountain ViewGoogle Scholar
  34. [34]
    SEMI F3: Guide for Welding Stainless Steel Tubing for Semiconductor Manufacturing Applications. SEMI, Mountain ViewGoogle Scholar
  35. [35]
    Hermanns, S.: Experiences from Piloting a Carbon Footprint Method for Semiconductor Manufacturing. IHTESH, Taiwan (2010)Google Scholar
  36. [36]
    Jeon, H.: Carbon Footprint Labeling Certified for 16 GB DDR3 Module. IHTESH, Taiwan (2010)Google Scholar
  37. [37]
    Mohr, N., Meijer, A., Huijbregts, M.A.J., Reijnders, L.: Environmental impact of thin-film GaInP/GaAs and multicrystalline silicon solar modules produced with solar electricity. Int. J. Life Cycle Assess, S. 225–235 (2009)CrossRefGoogle Scholar

Weiterführende Literatur

  1. SEMI E10: Standard for Definition and Measurement of Equipment Reliability, Availability and Maintainability (RAM), SEMI, Mountain View (1996)Google Scholar
  2. United States Patent, Patent Number 5,065,794, Nov. 19 (1991)Google Scholar
  3. SEMI E49.5: Guide for Ultrahigh Purity Solvent Distribution Systems in Semiconductor Manufacturing Equipment. SEMI, Mountain View (1998)Google Scholar
  4. SEMI E49.4: Guide for High Purity Solvent Distribution Systems in Semiconductor Manufacturing Equipment. SEMI, Mountain View (1998)Google Scholar
  5. The European Agency for the Evaluation of Medicinal Products: Note for guidance on quality of water for pharmaceutical use, London (2002)Google Scholar
  6. Vogeler, K.: Qualitätsanforderungen an Orbitalschweißnähte in der Halbleiterindustrie und in Bio-/Pharmatechnischen Anlagen. Dockweiler AG, Neustadt-GleweGoogle Scholar
  7. Konopka, A.: Current issues and system design considerations affecting pharmaceutical water systems. Ultrapure. Water J. (2002)Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.AGS EPG FES, Applied Materials GmbHFeldkirchenDeutschland

Personalised recommendations