Advertisement

Beatmung pp 439-460 | Cite as

Akutes Lungenversagen (ARDS)

  • Reinhard Larsen
  • Thomas Ziegenfuß

Zusammenfassung

Beim ARDS (früher: »adult respiratory distress syndrome«) handelt es sich um eine akute, schwere pulmonale Insuffizienz als typische Reaktion der Lunge auf unterschiedliche Noxen. Das ARDS ist keine Krankheitseinheit, sondern ein entzündliches Syndrom der Lunge, gekennzeichnet durch eine diffuse alveoläre Schädigung und eine gesteigerte Permeabilität der Lungenkapillaren mit Zunahme des extravasalen Lungenwassers (nichtkardiogenes Lungenödem). Klinisch ist das Syndrom charakterisiert durch schwere Dyspnoe, Tachypnoe, Zyanose trotz O2-Zufuhr, verminderte Lungencompliance und bilaterale diffuse Infiltrationen in allen Lungenbereichen.

Weiterführende Literatur

  1. Afshari A, Brok J, Møller AM, Wetterslev J (2010) Inhaled nitric oxide for acute respiratory distress syndrome (ARDS) and acute lung injury in children and adults. Cochrane Database Syst Rev (7): CD002787Google Scholar
  2. Agarwal R, Nath A, Aggarwal A, Gupta D (2007) Do glucocorticoids decrease mortality in acute respiratory distress syndrome? A metaanalysis. Respirology 12: 585–590Google Scholar
  3. Artigas A, Bernard GR, Carlet J, Dreyfuss D, Gattinoni L, et al. (1998) The American-European Consensus Conference on ARDS, part 2. Ventilatory, pharmacologic, supportive therapy, study design strategies and issues related to recovery and remodeling. Intensive Care Med 24: 378–398Google Scholar
  4. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, et al.; LUNG SAFE Investigators; ESICM Trials Group (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315(8): 788–800Google Scholar
  5. Bernard CR, Artigas A, Brigham KL, Carlet J, Falke K, et al. (1994) Report of the American-European consensus conference on ARDS: definitions, mechanisms, relevant outcomes and clinical coordination. Intensive Care Med 20: 225–232Google Scholar
  6. Bime C, Fiero M, Lu Z, Oren E, Berry CE, Parthasarathy S, Garcia JG (2017) High positive end-expiratory pressure is associated with improved survival in obese patients with acute respiratory distress syndrome. Am J Med 130(2): 207–213Google Scholar
  7. Bloomfield R, Noble DW, Sudlow A (2015) Prone position for acute respiratory failure in adults. Cochrane Database Syst Rev (11): CD008095Google Scholar
  8. Bouferrache K, Vieillard-Baron A (2011) Acute respiratory distress syndrome, mechanical ventilation, and right ventricular function. Curr Opinion Crit Care 17(1): 30–35Google Scholar
  9. Braune S, Schönhofer B (2017) Prolongiertes Weaning bei Patienten mit ARDS. Dtsch Med Wochenschr 142: 102–109Google Scholar
  10. Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, et al. (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351(4): 327–336Google Scholar
  11. Caironi P, Cressoni M, Chiumello D, Ranieri M, Quintel M, et al. (2010) Lung opening and closing during ventilation of acute respiratory distress syndrome. Am J Respir Crit Care Med 181: 578–586Google Scholar
  12. Calfee CS, Matthay MA (2007) Nonventilatory treatments for acute lung injury and ARDS. Chest 131: 913–920Google Scholar
  13. Chacko B, Peter JV, Tharyan P, John G, Jeyaseelan L (2015) Pressure-controlled versus volume-controlled ventilation for acute respiratory failure due to acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). Cochrane Database Syst Rev 1:CD008807Google Scholar
  14. Chiumello D, Brioni M (2016) Severe hypoxemia: which strategy to choose. Crit Care 20(1): 132Google Scholar
  15. Davies MW, Fraser JF (2010) Partial liquid ventilation for preventing death and morbidity in adults with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev (4): CD003707Google Scholar
  16. Deal EN, Hollands JM, Schramm GE, Micek ST (2008) Role of corticosteroids in the management of acute respiratory distress syndrome. Clin Ther 30: 787–799Google Scholar
  17. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI) (2015) S2e_Leitlinie: Lagerungstherapie und Frühmobilisation zur Prophylaxe oder Therapie von pulmonalen Funktionsstörungen. Registernummer 001-015. Stand: 30.04.2015, gültig bis 29.04.2020. http://www.awmf.org/leitlinien/detail/ll/001-015.html. Zugegriffen: 26. Mai 2017
  18. Dushianthan A, Grocott MPW, Postle AD, Cusack R (2011) Acute respiratory distress syndrome and acute lung injury. Postgrad Med J 87: 612–622Google Scholar
  19. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R (2004) SAFE Study Investigators A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med 350: 2247–2256Google Scholar
  20. Gattinoni L, Caironi P (2010) Prone positioning: beyond physiology. Anesthesiology 113: 1262–1264Google Scholar
  21. Hodgson C, Goligher EC, Young ME, Keating JL, Holland AE, Romero L, Bradley SJ, Tuxen D (2016) Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation. Cochrane Database Syst Rev 11: CD006667Google Scholar
  22. Kopp R, Kuhlen R (2007) Therapie des respiratorischen Versagens. In: Kuhlen R, Rossaint R (Hrsg) Evidenzbasierte Medizin in Anästhesie und Intensivmedizin, 2. Aufl. Springer, Berlin Heidelberg New YorkGoogle Scholar
  23. Kredel M, Bierbaum D, Lotz C, et al. (2015) Therapie des akuten Lungenversagens. Anaesthesist 64: 277Google Scholar
  24. Laffey JG, Pham T, Bellani G (2017) Continued under-recognition of acute respiratory distress syndrome after the Berlin definition: what is the solution. Curr Opin Crit Care 23(19): 1017Google Scholar
  25. MacLaren G, Combes A, Bartlett RH (2012) Contemporary extracorporeal membrane oxygenation for adult respiratory failure: life support in the new era. Intensive Care Med 38: 210–222Google Scholar
  26. Meade MO, Cook DJ, Guyatt GH, Slutsky AS, Arabi YM, et al.; Lung Open Ventilation Study Investigators (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299(6): 637–645Google Scholar
  27. Meduri G, Marik P, Chrousos G, Pastores SM, Arlt W, Beishuizen A, Bokhari F, Zaloga G, Annane D (2007) Steroid treatment in ARDS: A critical appraisal of the ARDS network trial and the recent literature. Intensive Care Med 34: 61–69Google Scholar
  28. Möhnle P, Briegel J (2012) Corticosteroid administration for acute respiratory distress syndrome: Therapeutic option?. Anaesthesist 61: 344–353Google Scholar
  29. Muñoz J, Santa-Teresa P, Tomey MJ, Visedo LC, Keough E, Barrios JC, Sabell S, Morales A (2017) Extracorporeal membrane oxygenation (ECMO) in adults with acute respiratory distress syndrome (ARDS): A 6-year experience and case-control study. Heart Lung 46(2): 100–105Google Scholar
  30. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) Clinical Trials Network, Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, et al. (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354: 2564–2575Google Scholar
  31. Papazian L, Forel JM, Gacouin A, Penot-Ragon C, Perrin G, et al.; ACURASYS Study Investigators (2010) Neuromuscular blockers in early acute respiratory distress syndrome. N Engl J Med 363: 1107–1116Google Scholar
  32. Patronitia N, Bellania G, Pesent A (2011) Nonconventional support of respiration. Curr Op Crit Care 17: 527–532Google Scholar
  33. Peter J, John P, Graham P, Moran JL, George IA, Bersten A (2008) Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: Meta-analysis. BMJ 336: 1006–1009Google Scholar
  34. Petrucci N, De Fei C (2013) Lung protective ventilation strategy for the acute respiratory distress syndrome (Review). Cochrane Database Syst Rev (2): CD003844Google Scholar
  35. Pierrakos C, Karanikolas M, Scolletta S, Karamouzos V, Velissaris D (2012) Acute respiratory distress syndrome: pathophysiology and therapeutic options. J Clin Med Res 4: 7–16Google Scholar
  36. Pipeling MR, Fan E (2010) Therapies for refractory hypoxemia in acute respiratory distress syndrome. JAMA 304: 2521–2527Google Scholar
  37. Poole J, McDowell C, Lall R, Perkins G, McAuley D, Gao F, Young D (2017) Individual patient data analysis of tidal volumes used in three large randomized control trials involving patients with acute respiratory distress syndrome. Br J Anaesth 118(4): 570–575Google Scholar
  38. Roch A, Guervilly C, Papazian L (2011) Fluid management in acute lung injury and ARDS. Ann Intensive Care 1: 16Google Scholar
  39. Santa Cruz R, Rojas JI, Nervi R, Heredia R, Ciapponi A (2013) High versus low positive end-expiratory pressure (PEEP) levels for mechanically ventilated adult patients with acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev (6): CD009098Google Scholar
  40. Sokol J, Jacobs SE, Bohn D (2003) Inhaled nitric oxide for acute hypoxemic respiratory failure in children and adults. Cochrane Database Syst Rev (1): CD002787Google Scholar
  41. Steinberg KP, Hudson LD, Goodman RB, Hough CL, Lanken PN, et al.; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) (2006) Clinical Trials Network. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome. N Engl J Med 354: 1671–1684Google Scholar
  42. Sud S, Sud M, Friedrich JO, Wunsch H, Meade MO, Ferguson ND, Adhikari NK (2015) High frequency oscillatory ventilation versus conventional ventilation for acute respiratory distress syndrome. Cochrane Database Syst Rev 4: CD004085Google Scholar
  43. Tang BMP, Craig JC, Eslick GD, Ian Seppelt I, McLean AS (2009) Use of corticosteroids in acute lung injury and acute respiratory distress syndrome: A systematic review and meta-analysis. Crit Care Med 37: 1594–1603Google Scholar
  44. The Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308Google Scholar
  45. The ARDS Definition Task Force (2012) Acute respiratory distress syndrome. The Berlin Definition. JAMA 307, 23: 2526–2533Google Scholar
  46. Thompson BT, Hayden D, Matthay MA, Brower R, Parsons PE (2001) Clinicians’ approaches to mechanical ventilation in acute lung injury and ARDS. Chest 120: 1622–1627Google Scholar
  47. Toth I, Leiner T, Mikor A, Szakmany T, Bogar L, Molnar Z (2007) Hemodynamic and respiratory changes during lung recruitment and descending optimal positive end-exspiratory pressure titration in patients with acute respiratory distress syndrome. Cit Care Med 35(3): 787–793Google Scholar
  48. Villar J,Kacmarek RM, Pérez-Méndez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med34: 1311–1318Google Scholar
  49. Wheeler AP, Bernard GR, Thompson BT, Schoenfeld D, Wiedemann HP, et al.; National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome (ARDS) (2006) Clinical Trials Network Pulmonary-artery versus central venous catheter to guide treatment of acute lung injury. N Engl J Med 354: 2213–2224Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Reinhard Larsen
    • 1
  • Thomas Ziegenfuß
    • 2
  1. 1.HomburgDeutschland
  2. 2.St. Josef KrankenhausMoersDeutschland

Personalised recommendations