Advertisement

Beatmung pp 301-337 | Cite as

Spezielle Beatmungsverfahren

  • Reinhard Larsen
  • Thomas Ziegenfuß
  • Alexander Mathes

Zusammenfassung

Spezielle Beatmungsverfahren werden gewöhnlich dann eingesetzt, wenn mit den konventionellen oder Standardverfahren das Ziel der Beatmungstherapie nicht erreicht werden kann. Die Grenzen zwischen konventionellen und alternativen Verfahren sind allerdings fließend.

Weiterführende Literatur

Weiterführende Literatur zu IRV

  1. Kotani T, Katayama S, Fukuda S, Miyazaki Y, Sato Y (2016) Pressure-controlled inverse ratio ventilation as a rescue therapy for severe acute respiratory distress syndrome. Springerplus 5(1): 716Google Scholar
  2. Marcy TW (1994) Inverse ratio ventilation. In: Tobin MJ (Ed) Principles and practice of mechanical ventilation. McGraw-Hill, New York St. Louis San Francisco, pp 319–332Google Scholar
  3. Shanholtz C, Brower R (1994) Should inverse ratio ventilation be used in adult respiratory distress syndrome? Am J Respir Crit Care Med 149: 1354–1358Google Scholar

Weiterführende Literatur zu APRV

  1. Kopp R, Kuhlen R (2007) Therapie des respiratorischen Versagens. In: Kuhlen R, Rossaint R (Hrsg) Evidenzbasierte Medizin in Anästhesie und Intensivmedizin, 2. Aufl. Springer, Berlin Heidelberg New YorkGoogle Scholar
  2. Kotani T, Katayama S, Fukuda S, , Miyazaki Y, Sato Y (2016) Pressure-controlled inverse ratio ventilation as a rescue therapy for severe acute respiratory distress syndrome. Springerplus 5(1): 716Google Scholar
  3. Mireles-Cabodevila E, Kacmarek RM (2016) Should airway pressure release ventilation be the primary mode in ARDS? Resp Care 61: 761–773Google Scholar
  4. Myers TR, MacIntyre NR (2007) Does airway pressure release ventilation offer important new advantages in mechanical ventilator support? Respir Care 52: 452–458Google Scholar
  5. Putensen C, Zech S, Wrigge H, Zinserling J, Stüber F, Von Spiegel T, Mutz N (2001) Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med 164: 43–49Google Scholar
  6. Sydow M (2000) Biphasic positive airway pressure (BIPAP) und Airway pressure release ventilation (APRV). In: Kuhlen R, Guttmann J, Rossaint R (Hrsg) Neue Formen der assistierten Spontanatmung. Urban & Fischer, München Jena, S 23–38Google Scholar

Weiterführende Literatur zu BIPAP

  1. Gama de Abreu M, Cuevas M, Spieth PM (2010) Regional lung aeration and ventilation during pressures support and biphasic positive airway pressure ventilation in experimental lung injury. Crit Care 14: R34Google Scholar
  2. Moerer O, Herrmann P, Hinz J, Severgnini P, Calderini E, Quintel M, Pelosi P (2009) High flow biphasic positive airway pressure by helmet – effects on pressurization, tidal volume, carbon dioxide accumulation and noise exposure. Crit Care 13: R85Google Scholar

Weiterführende Literatur zu ASV

  1. Branson RD (1999) New modes of mechanical ventilation. Curr Opinion Crit Care 5: 33–42Google Scholar
  2. Brunner JX (2002) History and principles of closed-loop control applied to mechanical ventilation. Neth J Crit Care 6: 6–9Google Scholar
  3. Kirakli C, Naz I, Ediboglu O, Tatar D, Budak A, Tellioglu E (2015) A randomized controlled trial comparing the ventilation duration between adaptive support ventilation and pressure assist/control ventilation in medical patients in the ICU. Chest 14: 1503–1509Google Scholar
  4. Kirakli C, Özdemir I, Ucar ZZ, Cimen P, Kepil S, Ozkan SA (2011) Adaptive support ventilation for faster weaning in COPD: a randomised controlled trial. Eur Respir J 38: 774–780Google Scholar
  5. Petter AH, Chioléro RL, Cassina T (2003) Automatic »respirator/weaning« with adaptive support ventilation: the effect on duration of endotracheal intubation and patient management. Anesth Analg 97: 1743–1750Google Scholar

Weiterführende Literatur zu PAV

  1. Bosma KJ, Read BA, Bahrgard Nikoo MJ, Jones PM, Priestap FA, Lewis JF (2016) A pilot randomized trial comparing weaning from mechanical ventilation on pressure support versus proportional assist ventilation. Crit Care Med 44: 1098–1108Google Scholar
  2. Brunner JX (2002) History and principles of closed-loop control applied to mechanical ventilation. Neth J Crit Care 6: 6–9Google Scholar
  3. Capra C, Somaini O, Konrad P (2002) Proportional pressure support in acute lung injury. Intensivmed 39: 584–594Google Scholar
  4. Guttmann J, Haberthür C, Stocker R (2000) Proportionale Druckunterstützung (PAV) und Automatische Tubuskompensation (ATC). In: Kuhlen R, Guttmann J, Rossaint R (Hrsg) Neue Formen der assistierten Spontanatmung. Urban & Fischer, München Jena, S 23–38Google Scholar
  5. Navalesi P Costa R (2003) New modes of mechanical ventilation: proportional assist ventilation, neurally adjusted ventilatory assist, and fractal ventilation. Curr Opinion Crit Care 9: 51–58Google Scholar
  6. Vasconcelos RS, Sales RP, de P Melo LH, Marinho LS, Bastos VP, et al. (2017) Influences of duration of inspiratory effort, respiratory mechanics, and ventilator type on asynchrony with pressure support and proportional assist ventilation. Respir Care 62(5): 550–557Google Scholar
  7. Wrigge H, Varelmann D, Zinserling J, Hering R, Kuhlen R, Putensen C (2003) »Proportional assist ventilation« kombiniert mit »automatic tube compensation«. Ein viel versprechendes Konzept der augmentierten Spontanatmung? Anaesthesist 52: 341–348Google Scholar

Weiterführende Literatur zu ATC

  1. Figueroa-Casas JB, Montoya R, Arzabala A, Connery SM (2010) Comparison between automatic tube compensation and continuous positive airway pressure during spontaneous breathing trials. Respir Care 55(5): 549–554Google Scholar
  2. L’Her E (2012) Automatic tube compensation: is it worthwhile? Respir Care 57(5): 813–814Google Scholar
  3. Tanios MA, Epstein SK (2010) Spontaneous breathing trials: should we use automatic tube compensation? Respir Care 55(5): 640–642Google Scholar

Weiterführende Literatur zu ILV

  1. Anantham D, JagadesanR, Tiew PEC (2005) Clinical review: Independent lung ventilation in critical care. Critical Care 9: 9(6): 594–600Google Scholar
  2. Pilcher DV, Auzinger GM, Mitra B, Tuxen DV, Salamonsen RF, et al. (2007) Predictors of independent lung ventilation: an analysis of 170 single-lung transplantations. J Thorac Cardiovasc Surg 133: 1071–1077Google Scholar
  3. Simon B, Ebert J, Bokhari F, Capella J, Emhoff T, et al. (2012) Management of pulmonary contusion and flail chest: an Eastern Association for the Surgery of Trauma practice management guideline. J Trauma Acute Care Surg 73: S351–S361Google Scholar

Weiterführende Literatur zu PHC

  1. Contreras M, Masterson C, Laffey JG (2015) Permissive hypercapnia: what to remember. Curr Opin Anaesthesiol 28: 26–37Google Scholar
  2. Marhong J, Fan E (2014) Carbon dioxide in the critically ill: too much or too little of a good thing? Respir Care 59: 1597–1605Google Scholar
  3. Ni Chonghaile M, Higgins B, Laffey JG (2005) Permissive hypercapnia: role in protective lung ventilatory strategies. Curr Opin Crit Care 11: 56–62Google Scholar
  4. Wang C, Wang X, Chi C, Guo L, Guo L, et al. (2016) Lung ventilation strategies for acute respiratory distress syndrome: a systematic review and network meta-analysis. Sci Rep 6: 22855Google Scholar

Weiterführende Literatur zur Rekrutierung

  1. Acute Respiratory Distress Syndrome Network (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342: 1301–1308Google Scholar
  2. Claesson J, Freundlich M, Gunnarsson M, Laake JH, Vandvik PO, et al.; Scandinavian Society of Anaesthesiology and Intensive Care Medicine (2015) Scandinavian clinical practice guideline on mechanical ventilation in adults with the acute respiratory distress syndrome. Acta Anaesth Scand 59: 28–297Google Scholar
  3. Gattinoni L, Vagginelli F, Chiumello D (2003) Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Crit Care Med 31 (Suppl): S300–S304Google Scholar
  4. Hodgson C, Goligher EC, Young ME, Keating JL, Holland AE, Romero L, Bradley SJ, Tuxen D (2016) Recruitment manoeuvres for adults with acute respiratory distress syndrome receiving mechanical ventilation. Cochrane Database Syst Rev 11: CD006667Google Scholar
  5. Lachmann B (2000) The concept of open lung. Int J Intensive Care 215–219Google Scholar
  6. Marini JJ (2001) Recruitment maneuvers to achieve an »open lung« – whether and how? Crit Care Med 29: 1647–1648Google Scholar
  7. Meade MO, Guyatt GM, Cook DJ, et al. (2002) Physiologic randomized pilot study of a lung recruitment maneuver in acute lung injury. Am J Respir Crit Care Med 165: A683Google Scholar

Weiterführende Literatur zur Bauchlagerung

  1. Blanch L, Mancebo J, Perez M, Martinez M, Mas A, et al. (1997) Short-term effects of prone position in critically ill patients with acute respiratory distress syndrome. Intensive Care Med 23: 1033–1039Google Scholar
  2. Claesson J, Freundlich M, Gunnarsson M, Laake JH, Vandvik PO, et al.; Scandinavian Society of Anaesthesiology and Intensive Care Medicine (2015) Scandinavian clinical practice guideline on mechanical ventilation in adults with the acute respiratory distress syndrome. Acta Anaesth Scand 59: 28–297Google Scholar
  3. Deutsche Gesellschaft für Anästhesiologie und Intensivmedizin e.V. (DGAI) (2015) Lagerungstherapie und Frühmobilisation zur Prophylaxe oder Therapie von pulmonalen Funktionsstörungen. Registernummer 001-015. Stand: 30.04.2015, gültig bis 29.04.2020. http://www.awmf.org/leitlinien/detail/ll/001-015.html. Zugegriffen: 28. Mai 2017
  4. Gattinoni L, Tognoni G, Pesenti A, Taccone P, Mascheroni D, et al.; Prone-Supine Study Group (2001) Effect of prone positioning on the survival of patients with acute respiratory failure. N Engl J Med 345: 568–573Google Scholar
  5. Girard TD, Bernard GR (2007) Mechanical ventilation in ARDS: a state-of-the-art review. Chest 131: 921–929Google Scholar
  6. Guerin C, Gaillard S, Lemasson S, Ayzac L, Girard R, et al. (2004) Effects of systematic prone positioning in hypoxemic acute respiratory failure: a randomized controlled trial. JAMA 292: 2379–2387Google Scholar
  7. Kopterides P, Siempos II, Armaganidis A (2009) Prone positioning in hypoxemic respiratory failure: meta-analysis of randomized controlled trials. J Crit Care 24: 89–100Google Scholar
  8. Mancebo J, Fernández R, Blanch L, Rialp G, Gordo F, et al. (2006) A multicenter trial of prolonged prone ventilation in severe acute respiratory distress syndrome. Am J Respir Crit Care Med 173: 1233–1239Google Scholar
  9. Pierrakos C, Karanikolas M, Scolletta S, Karamouzos V, Velissaris D (2012) Acute respiratory distress syndrome: pathophysiology and therapeutic options. J Clin Med Res 4: 7–16Google Scholar
  10. Sud S, Friedrich JO, Taccone P, Polli F, Adhikari NK, et al. (2010) Prone ventilation reduces mortality in patients with acute respiratory failure and severe hypoxemia: systematic review and metaanalysis. Intensive Care Med 36: 585–599Google Scholar

Weiterführende Literatur zu HFV

  1. Chan KP, Stewart TE, Mehta S (2007) High-frequency oscillatory ventilation for adult patients with ARDS. Chest 31: 1907–1916Google Scholar
  2. Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, et al.; Multicenter Oscillatory Ventilation For Acute Respiratory Distress Syndrome Trial (MOAT) Study Investigators (2002) High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med 166: 801–808Google Scholar
  3. Fanelli V, Mehta S (2010) Open the lung with high-frequency oscillation ventilation or conventional mechanical ventilation? It may not matter! Crit Care 14: 1010Google Scholar
  4. Fessler HE, Hess DR (2007) Respiratory controversies in the critical care setting. Does high-frequency ventilation offer benefits over conventional ventilation in adult patients with acute respiratory distress syndrome? Respir Care 52: 595–605Google Scholar
  5. Gattinoni L, Carlesso E, Langer T (2012) Towards ultraprotective mechanical ventilation. Curr Opinion Anaesthesiol 25(2): 141–147Google Scholar
  6. Ip T, Mehta S (2012) The role of high-frequency oscillatory ventilation in the treatment of acute respiratory failure in adults. Curr Opin Crit Care 18: 70–79Google Scholar
  7. Lunkenheimer PP, Salle BL, Whimster WF, Baum M (1994) High frequency ventilation: Reappraisal and progress in europe and abroad. Crit Care Med 22: 19–23Google Scholar
  8. Ritacca FV, Stewart TE (2003) Clinical review: High-frequency oscillatory ventilation in adults – a review of the literature and practical applications. Crit Care 7(5): 385–390Google Scholar
  9. Slutsky AS (1988) Nonconventional methods of ventilation. Am Rev Respir Dis 138: 175–183Google Scholar
  10. Sud S, Sud M, Friedrich JO, Meade MO, Ferguson ND, Wunsch H, Adhikari NK (2010) High frequency oscillation in patients with acute lung injury and acute respiratory distress syndrome (ARDS): systematic review and meta-analysis. BMJ 340: c2327Google Scholar
  11. Wunsch H, Mapstone J (2004) High-frequency ventilation versus conventional ventilation for treatment of acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev (1): CD004085Google Scholar
  12. Bollen CW, van Well GT, Sherry T, Beale RJ, Shah S, et al. (2005) High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial. Crit Care 9: R430–R439Google Scholar

Weiterführende Literatur zu CFT

  1. Villar J, Slutsky AS (1994) Apnoic oxygenation and other nonconventional techniques of ventilatory support. In: Tobin MJ (Ed) Principles and practice of mechanical ventilation. McGraw-Hill, New York St. Louis San Francisco, pp 499–510Google Scholar
  2. Zander R, Mertzlufft F (1994) Sauerstoffversorgung trotz Atemstillstandes. Anästhesiol Intensivmed Notfallmed Schmerzther 29: 223–227Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Reinhard Larsen
    • 1
  • Thomas Ziegenfuß
    • 2
  • Alexander Mathes
    • 3
  1. 1.HomburgDeutschland
  2. 2.St. Josef KrankenhausMoersDeutschland
  3. 3.Klinik für Anästhesiologie und Operative IntensivmedizinUniklinik KölnKölnDeutschland

Personalised recommendations