Advertisement

Brachytherapie

  • Frank Hensley
Chapter

Zusammenfassung

Die Brachytherapie nutzt den durch das Abstandsquadratgesetz bedingten steilen Dosisgradienten im Nahbereich einer Strahlungsquelle, um (meist kleinvolumige) Dosisverteilungen mit steilem Abfall nach allen Seiten zu erzeugen. Hierzu werden kleine umschlossene Strahler direkt in das Zielgebiet (bzw. in nahen Kontakt damit) eingebracht. Die Bezeichnung Brachytherapie leitet sich vom griechischen brachy = kurz ab, womit der kurze Abstand zwischen Strahlungsquelle und Zielpunkt gemeint ist. Abb. 27.1 zeigt einen Vergleich des Dosisgradienten \(1/r^{2}\) einer Punktquelle in der Tele- und Brachytherapie. In der Teletherapie werden Abstände im Bereich von 1 m eingesetzt, um einen möglichst flachen Dosisgradienten zu erhalten. Damit soll eine möglichst geringe Dosisüberhöhung am Strahleintritt gegenüber dem Zielgewebe in der Tiefe erreicht werden. In der Brachytherapie erfolgt die Deposition der therapeutischen Dosis im Abstand von etwa 1–2 cm vom Strahler, so dass der Dosisabfall hinter dem Dosierungspunkt sehr rasch ist, aber eine Dosisüberhöhung in unmittelbarer Nähe des Strahlers entsteht. Zur Behandlung von größeren Volumina werden mit Hilfe von vorgefertigten Applikatoren oder von Kathetern Anordnungen von mehreren Strahlungsquellen in das Zielgebiet oder in unmittelbaren Kontakt damit gebracht.

References

  1. 1.
    Adams ML, Larsen EW (2002) Fast iterative methods for discrete-ordinates particle transport calculations. Prog Nucl Energy 40(1):3–159. https://doi.org/10.1016/S0149-1970(01)00023-3CrossRefGoogle Scholar
  2. 2.
    Nath R, Bice WS, Butler WM, Chen Z, Meigooni AS, Narayana V, Rivard MJ, Yu Y American Association of Physicists in M (2009) AAPM recommendations on dose prescription and reporting methods for permanent interstitial brachytherapy for prostate cancer: report of Task Group 137. Med Phys 36(11):5310–5322.  https://doi.org/10.1118/1.3246613ADSCrossRefGoogle Scholar
  3. 3.
    American Association of Physicists in Medicine (AAPM) Strahlerregister des Radiological Physics Center. http://rpc.mdanderson.org/rpc/. Zugegriffen: 2. Febr. 2017
  4. 4.
    Podder TK, Beaulieu L, Caldwell B, Cormack RA, Crass JB, Dicker AP, Fenster A, Fichtinger G, Meltsner MA, Moerland MA, Nath R, Rivard MJ, Salcudean T, Song DY, Thomadsen BR, Yu Y (2014) American Association of Physicists in Medicine Brachytherapy S, Therapy Physics C. Groupe Europeen de Curietherapie-European Society for R, Oncology BS (AAPM and GEC-ESTRO guidelines for image-guided robotic brachytherapy: report of Task Group 192. Med Phys 41(10):101501. https://doi.org/10.1118/1.4895013)Google Scholar
  5. 5.
    Anderson LL (1976) Spacing nomograph for interstitial implants of 125I seeds. Med Phys 3(1):48–51.  https://doi.org/10.1118/1.594269CrossRefGoogle Scholar
  6. 6.
    Anderson LL, Nath R, Weaver KA (1990) Interstitial Brachytherapy: physical, biological and clinical considerations. Raven, New YorkGoogle Scholar
  7. 7.
    Anderson LL, Moni JV, Harrison LB (1993) A nomograph for permanent implants of palladium-103 seeds. Int J Radiat Oncol Biol Phys 27(1):129–135CrossRefGoogle Scholar
  8. 8.
    Bachtiary B, Dewitt A, Pintilie M, Jezioranski J, Ahonen S, Levin W, Manchul L, Yeung I, Milosevic M, Fyles A (2005) Comparison of late toxicity between continuous low-dose-rate and pulsed-dose-rate brachytherapy in cervical cancer patients. Int J Radiat Oncol Biol Phys 63(4):1077–1082CrossRefGoogle Scholar
  9. 9.
    Baltas D, Kolotas C, Geramani K, Mould RF, Ioannidis G, Kekchidi M, Zamboglou N (1998) A conformal index (COIN) to evaluate implant quality and dose specification in brachytherapy. Int J Radiat Oncol Biol Phys 40(2):515–524CrossRefGoogle Scholar
  10. 10.
    Baltas D, Sakelliou L, Zamboglou N (2007) The physics of modern brachytherapy for oncology. Taylor & Francis, New York LondonGoogle Scholar
  11. 11.
    Barendsen GW (1982) Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. Int J Radiat Oncol Biol Phys 8(11):1981–1997CrossRefGoogle Scholar
  12. 12.
    Beaulieu L, Carlsson Tedgren A, Carrier JF, Davis SD, Mourtada F, Rivard MJ, Thomson RM, Verhaegen F, Wareing TA, Williamson JF (2012) Report of the Task Group 186 on model-based dose calculation methods in brachytherapy beyond the TG-43 formalism: current status and recommendations for clinical implementation. Med Phys 39(10):6208–6236.  https://doi.org/10.1118/1.4747264CrossRefGoogle Scholar
  13. 13.
    Bentzen SM, Joiner MC (2009) The linear-quadratic approach in clinical practice. In: Joiner MJ, van der Kogel A (Hrsg) Basic clinical radiobiology, 4. Aufl. Hodder Education, London, S 120–134CrossRefGoogle Scholar
  14. 14.
    Berger MJ (1968) Energy deposition in water by photons from point isotropic sources. J Nucl Med:suppl 1:17–25Google Scholar
  15. 15.
    Bice WJ (2005) Post procedural evaluation for prostate implants. In: Thomadson B, Rivard M, Butler W (Hrsg) Brachytherapy physics, 2. Aufl. Proceedings of the Joint Americam Association of Physicists in Medicin/ American Brachytherapy Society Summer School. Seattle University, Seattle, July19–July22. Medical physics monograph no.31. Medical Physics Publishing, Madison, S 477–484Google Scholar
  16. 16.
    Bidmead M, Venselaar J, Pérez-Calatayud J (2004) A practical guide to quality control of brachytherapy equipment: European guidelines for quality assurance in radiotherapy. ESTRO, Google Scholar
  17. 17.
    De Boeck L, Beliën J, Egyed W (2011) Dose optimization in HDR brachytherapy: A literature review of quantitative models. Brussel HUB. Res Pap 2011:32Google Scholar
  18. 18.
    Brenner DJ, Hall EJ (1991) Conditions for the equivalence of continuous to pulsed low dose rate brachytherapy. Int J Radiat Oncol Biol Phys 20(1):181–190CrossRefGoogle Scholar
  19. 19.
    Bundesministerium für Umwelt (2001) Strahlenschutzverordnung (StrlSchV), Verordnung über den Schutz vor Schäden durch ionisierende Strahlen – Strahlenschutzverordnung vom 20. Juli 2001 (BGBl. I S. 1714; 2002 I S. 1459), die zuletzt durch Artikel 5 Absatz 7 des Gesetzes vom 24. Februar 2012 (BGBl. I S. 212) geändert worden istGoogle Scholar
  20. 20.
    Bundesministerium für Umwelt (2014) Strahlenschutz in der Medizin – Richtlinie zur Strahlenschutzverordnung (StrlSchV) vom 26. Mai 2011 (GMBl. 2011, Nr. 44–47, S. 867), zuletzt geändert durch RdSchr. des BMUB vom 11. Juli 2014 (GMBl. 2014, Nr. 49, S. 1020)Google Scholar
  21. 21.
    Bundesministerium für Verkehr und digitale Infrastruktur (2015) Verordnung über die innerstaatliche und grenzüberschreitende Beförderung gefährlicher Güter auf der Straße, mit Eisenbahnen und auf Binnengewässern (Gefahrgutverordnung Straße, Eisenbahn und Binnenschifffahrt – GGVSEB). BGBl 2015 Teil. BMVI) I(13):366Google Scholar
  22. 22.
    Carlsson ÅK, Ahnesjö A (2000) The collapsed cone superposition algorithm applied to scatter dose calculations in brachytherapy. Med Phys 27(10):2320–2332.  https://doi.org/10.1118/1.1290485CrossRefGoogle Scholar
  23. 23.
    Chofor N, Harder D, Selbach H-J, Poppe B (2016) The mean photon energy Ē F at the point of measurement determines the detector-specific radiation quality correction factor k Q, M in 192 Ir brachytherapy dosimetry. Z Med Phys 26(3):238–250CrossRefGoogle Scholar
  24. 24.
    Curtis SB (1986) Lethal and potentially lethal lesions induced by radiation – a unified repair model. Radiat Res 106(2):252–270ADSCrossRefGoogle Scholar
  25. 25.
    Dale RG (1986) Revisions to radial dose function data for 125I and 131Cs. Med Phys 13(6):963–964.  https://doi.org/10.1118/1.595828CrossRefGoogle Scholar
  26. 26.
    Deasy JO (1997) Multiple local minima in radiotherapy optimization problems with dose-volume constraints. Med Phys 24(7):1157–1161.  https://doi.org/10.1118/1.598017CrossRefGoogle Scholar
  27. 27.
    Delclos L, Fletcher GH, Moore EB, Sampiere VA (1980) Minicolpostats, dome cylinders, other additions and improvements of the fletcher-suit afterloadable system – indications and limitations of their use. Int J Radiat Oncol 6(9):1195–1206CrossRefGoogle Scholar
  28. 28.
    Deutsches Institut für Normung (DIN) (1992) DIN 6853-1: Medizinische ferngesteuerte, automatisch betriebene Afterloading-Anlagen. Besondere Festlegungen für die Sicherheit einschließlich der Geräte (IEC 601-2-17: 1989)Google Scholar
  29. 29.
    Deutsches Institut für Normung (DIN) (1993) DIN 6809-2: Klinische Dosimetrie – Brachytherapie mit umschlossenen gammastrahlenden radioaktiven StoffenGoogle Scholar
  30. 30.
    Deutsches Institut für Normung (DIN) (2002) DIN 6853-2: Medizinische ferngesteuerte, automatisch betriebene Afterloading-Anlagen – Teil 2: Strahlenschutzregeln für die ErrichtungGoogle Scholar
  31. 31.
    Deutsches Institut für Normung (DIN) (2004) DIN IEC 601-2-17: Medizinische elektrische Geräte – Teil 2-17: Besondere Anforderungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale von ferngesteuerten automatisch betriebenen Afterloading-Geräten für die Brachytherapie (IEC 62C/470/CD:2009)Google Scholar
  32. 32.
    Deutsches Institut für Normung (DIN) (2005) DIN 6853-2: Medizinische ferngesteuerte, automatisch betriebene Afterloading-Anlagen – Teil 3: Strahlenschutzregeln für die ErrichtungGoogle Scholar
  33. 33.
    Deutsches Institut für Normung (DIN) (2008) DIN 6800-2: Dosismessverfahren nach der Sondenmethode für Photonen- und Elektronenstrahlung – Teil 2: Dosimetrie hochenergetischer Photonen- und Elektronenstrahlung mit IonisationskammernGoogle Scholar
  34. 34.
    Deutsches Institut für Normung (DIN) (2012) DIN 6827-3: Protokollierung bei der medizinischen Anwendung ionisierender Strahlung – Teil 3: Brachytherapie mit umschlossenen StrahlungsquellenGoogle Scholar
  35. 35.
    Deutsches Institut für Normung (DIN) (2012) DIN 6853-5: Medizinische ferngesteuerte, automatisch betriebene Afterloading-Anlagen – Teil 5: Konstanzprüfung von KennmerkmalenGoogle Scholar
  36. 36.
    Deutsches Institut für Normung (DIN) (2017) DIN 6803-2: Dosimetrie für die Photonen-Brachytherapie. Teil 2: Strahler, Strahlerkalibrierung, Strahlerprüfung und Dosisberechnung (Als Normentwurf verabschiedet 17. Nov. 2017)Google Scholar
  37. 37.
    Deutsches Institut für Normung (DIN) (2018) DIN 6803-3: Dosimetrie für die Photonen-Brachytherapie. Teil 3: Dosismessverfahren, Verifikationsmessungen und in-vivo Dosimetrie (in Arbeit)Google Scholar
  38. 38.
    Dutreix A, Marinello G, Wambersie A (1982) Dosimetrie en Curietherapie. Masson, ParisGoogle Scholar
  39. 39.
    Edmundson G (1990) Geometry based optimization for stepping source implants. In: Martinez A, Orton C, Mould R (Hrsg) Brachytherapy HDR And LDR Proceedings Brachytherapy Meeting Remote Afterloading: State of the Art, Dearborn, 4–6 May 1989, Nucletron, Columbia, S 184–192Google Scholar
  40. 40.
    Ezzel G (2005) Optimization in brachytherapy. In: Thomadson B, Rivard M, Butler W (Hrsg) Brachytherapy physics, 2. Aufl. Proceedings of the Joint American Association of Physicists in Medicin / American Brachytherapy Society Summer School. Seattle University, Seattle, July19–July22, 2005 Medical Physics Publishing, Madison, S 415–434 (Medical Physics Monograph No. 31)Google Scholar
  41. 41.
    Ezzell G, Luthmann R (1995) Clinical implementation of dwell time optimization techniques for single stepping-source remote applicators. In: Williamson J, Thomadson B, Nath R (Hrsg) Brachytherapy Physics. AAPM Summer. School, Bd. 1994. Medical Physics Publishing, Madison, S 617–639Google Scholar
  42. 42.
    Fano U (1954) Note on the Bragg-Gray cavity principle for measuring energy dissipation. Radiat Res 1(3):237–240ADSCrossRefGoogle Scholar
  43. 43.
    Fowler J, Mount M (1992) Pulsed brachytherapy – the conditions for no significant loss of therapeutic ratio compared with traditional low-dose rate brachytherapy. Int J Radiat Oncol 23(3):661–669CrossRefGoogle Scholar
  44. 44.
    Gerbaulet A, Pötter R, Haie-Meder C, Mazeron J (2002) Cervix carcinoma. In: Gerbaulet A, Pötter R, Mazeron J, Meertens H, Van Limbergen E (Hrsg) The GEC-ESTRO handbook of brachytherapy. European Society for Therapeutic Radiology and Oncology. ESTRO, Brüssel, S 301–363Google Scholar
  45. 45.
    Gerbaulet A, Pötter R, Mazeron J-J, Meertens H, Van Limbergen E (2002) The GEC-ESTRO Handbook of Brachytherapy. European Society for Therapeutic Radiology and Oncology (ESTRO), Brüssel, https://www.estro.org/about/governance-organisation/committees-activities/gec-estro-handbook-of. Brachytherapy :Google Scholar
  46. 46.
    Gil’ad NC, Amols HI, Zelefsky MJ, Zaider M (2002) The Anderson nomograms for permanent interstitial prostate implants: a briefing for practitioners. Int J Radiat Oncol Biol Phys 53(2):504–511CrossRefGoogle Scholar
  47. 47.
    Glasser O, Quimby E, Taylor L, Weatherwax J, Morgan R (1961) Physical foundations of radiology, 3. Aufl. Harper & Row, New YorkGoogle Scholar
  48. 48.
    Goetsch SJ, Attix FH, Pearson DW, Thomadsen BR (1991) Calibration of 192Ir high-dose-rate afterloading systems. Med Phys 18(3):462–467.  https://doi.org/10.1118/1.596649CrossRefGoogle Scholar
  49. 49.
    Salembier C, Lavagnini P, Nickers P, Mangili P, Rijnders A, Polo A, Venselaar J, Hoskin P, Group GEP (2007) Tumour and target volumes in permanent prostate brachytherapy: a supplement to the ESTRO/EAU/EORTC recommendations on prostate brachytherapy. Radiother Oncol 83(1):3–10.  https://doi.org/10.1016/j.radonc.2007.01.014CrossRefGoogle Scholar
  50. 50.
    Potter R, Haie-Meder C, Van Limbergen E, Barillot I, De Brabandere M, Dimopoulos J, Dumas I, Erickson B, Lang S, Nulens A, Petrow P, Rownd J, Kirisits C, Group GEW (2006) Recommendations from gynaecological (GYN) GEC-ESTRO working group (II): concepts and terms in 3D image-based treatment planning in cervix cancer brachytherapy-3D dose volume parameters and aspects of 3D image-based anatomy, radiation physics, radiobiology. Radiother Oncol 78(1):67–77.  https://doi.org/10.1016/j.radonc.2005.11.014CrossRefGoogle Scholar
  51. 51.
    Ash D, Flynn A, Battermann J, de Reijke T, Lavagnini P, Blank L, Group EEUB, Group ER (2000) ESTRO/EAU/EORTC recommendations on permanent seed implantation for localized prostate cancer. Radiother Oncol 57(3):315–321CrossRefGoogle Scholar
  52. 52.
    Guedea F, Venselaar J, Hoskin P, Hellebust TP, Peiffert D, Londres B, Ventura M, Mazeron JJ, Limbergen EV, Potter R, Kovacs G (2010) Patterns of care for brachytherapy in Europe: updated results. Radiother Oncol 97(3):514–520.  https://doi.org/10.1016/j.radonc.2010.09.009CrossRefGoogle Scholar
  53. 53.
    Guerrero M, Li XA (2004) Extending the linear-quadratic model for large fraction doses pertinent to stereotactic radiotherapy. Phys Med Biol 49(20):4825–4835CrossRefGoogle Scholar
  54. 54.
    Haie-Meder C, Potter R, Van Limbergen E, Briot E, De Brabandere M, Dimopoulos J, Dumas I, Hellebust TP, Kirisits C, Lang S, Muschitz S, Nevinson J, Nulens A, Petrow P, Wachter-Gerstner N, Gynaecological GECEWG (2005) Recommendations from Gynaecological (GYN) GEC-ESTRO Working Group (I): concepts and terms in 3D image based 3D treatment planning in cervix cancer brachytherapy with emphasis on MRI assessment of GTV and CTV. Radiother Oncol 74(3):235–245.  https://doi.org/10.1016/j.radonc.2004.12.015CrossRefGoogle Scholar
  55. 55.
    Hall E, Giaccia A (2000) Radiation biology for the radiologist. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  56. 56.
    Hall EJ, Brenner DJ (1991) The dose-rate effect revisited: radiobiological considerations of importance in radiotherapy. Int J Radiat Oncol Biol Phys 21(6):1403–1414CrossRefGoogle Scholar
  57. 57.
    Hensley FW (2017) Present state and issues in IORT physics. Radiat Oncol 12:37.  https://doi.org/10.1186/s13014-016-0754-zCrossRefGoogle Scholar
  58. 58.
    Hoskin P, Kovacs G, van Vulpen M, Baltas D (2014) Prostate cancer. In: Van Limbergen E, Pötter R, Hoskin P, Baltas D (Hrsg) The GEC-ESTRO handbook of brachytherapy, 2. Aufl. Part II: Clinical Practice. European Society for Radiotherapy and Oncology (ESTRO), BrüsselGoogle Scholar
  59. 59.
    Hubbell JH, Seltzer SM (2017) Tables of X-Ray mass attenuation coefficients and mass energy-absorption coefficients from 1 keV to 20 meV for elements \(Z\)\(=\) 1 to 92 and 48 additional substances of dosimetric interest. National institute of standards and technology (NIST). https://www.nist.gov/pml/x-ray-mass-attenuation-coefficients. Zugegriffen: 2. Febr. 2017
  60. 60.
    International Atomic Energy Agency (IAEA) (2002) Calibration of photon and beta ray sources used in brachytherapy: guidelines on standardized procedures at secondary standards dosimetry laboratories (SSDLs) and hospitals, IAEA-TECDOC-1274. International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  61. 61.
    (2004) International Atomic Energy Agency. series, Bd. 398. IAEA, Absorbed dose determination in external beam radiotherapy: an international code of practice for dosimetry based on standards of absorbed dose to water. IAEA technical reportsGoogle Scholar
  62. 62.
    International Atomic Energy Agency (IAEA) (2008) Setting up a radiotherapy programme: clinical, medical physics, radiation protection and safety aspects. International Atomic Energy Agency (IAEA), ViennaGoogle Scholar
  63. 63.
    International Commission on Radiological Protection (ICRP) (2005) Prevention of high-dose-rate brachytherapy accidents. ICRP Publication 97. Ann Icrp 35(2):1–51CrossRefGoogle Scholar
  64. 64.
    International Commisson on Radiation Units and Measurements (ICRU) (1985) ICRU report 38: dose and volume specification for reporting intracavitary therapy in gynecologytherapyGoogle Scholar
  65. 65.
    International Commisson on Radiation Units and Measurements (ICRU) (1997) ICRU report 58: dose and volume specification for reporting interstital therapyGoogle Scholar
  66. 66.
    International Commisson on Radiation Units and Measurements (ICRU) ICRU Report 89: Prescribing, Recording and Reporting Brachytherapy for Cancer of the Cervix. The international Commission on Radiation Units and Measurements prepared in collaboration with Groupe Européen de Curiethérapie – European Society for Radiatiotherapy and Oncology (GEC-ESTRO)Google Scholar
  67. 67.
    Jäger R, Hübner W (1974) Dosimetrie und Strahlenschutz. Physikalisch-technische Date und Methoden für die Praxis, 2. Aufl. Thieme, StuttgartGoogle Scholar
  68. 68.
    Joiner MC, Bentzen SM (2009) Fractionation: the linear-quadratic approach. In: Joiner MJ, van der Kogel A (Hrsg) Basic clinical radiobiology, 4. Aufl. Hodder Education, London, S 102–119CrossRefGoogle Scholar
  69. 69.
    Joiner MC, van der Kogel A (2009) Basic clinical radiobiology, 4. Aufl. Hodder Education, LondonGoogle Scholar
  70. 70.
    van Kleffens HJ, Star WM (1979) Application of stereo X-ray photogrammetry (SRM) in the determination of absorbed dose values during intracavitary radiation therapy. Int J Radiat Oncol Biol Phys 5(4):557–563CrossRefGoogle Scholar
  71. 71.
    Krieger H, Baltas D, Kneschaurek P (1999) DGMP-Bericht. Dosisspezifikation Hdr-brachytherapie (14):Google Scholar
  72. 72.
    Krieger H, Baltas D, Kneschaurek P (2006) DGMP-Bericht. Prakt Dosim Hdr-brachytherapie (13):Google Scholar
  73. 73.
    Van der Laarse R, de Boer R (1990) Computerized high dose rate brachytherapy treatment planning. In: Martinez A, Orton C, Mould R (Hrsg) Brachytherapy HDR And LDR Proceedings Brachytherapy Meeting Remote Afterloading: State of the Art. 4–6 May 1989, Dearborn. Nucletron, Columbia, S 169–183Google Scholar
  74. 74.
    Lahanas M, Baltas D, Zamboglou N (2003) A hybrid evolutionary algorithm for multi-objective anatomy-based dose optimization in high-dose-rate brachytherapy. Phys Med Biol 48(3):399–415CrossRefGoogle Scholar
  75. 75.
    Laughlin JS, Holodny EI, Ritter FW, Siler WM (1963) A dose description system for interstitial radiation therapy – seed implants. Am J Roentgenol Radium Ther Nucl Med 89(3):470Google Scholar
  76. 76.
    Lessard E, Pouliot J (2001) Inverse planning anatomy-based dose optimization for HDR-brachytherapy of the prostate using fast simulated annealing algorithm and dedicated objective function. Med Phys 28(5):773–779CrossRefGoogle Scholar
  77. 77.
    Van Limbergen E, Pötter R, Hoskin P, Baltas D (2014) The GECESTRO handbook of brachytherapy, 2. Aufl. European Society for Therapeutic Radiology and Oncology (ESTRO), BrüsselGoogle Scholar
  78. 78.
    Meisberger LL, Keller RJ, Shalek RJ (1968) The effective attenuation in water of the gamma rays of gold 198, iridium 192, cesium 137, radium 226, and cobalt 60. Radiology 90(5):953–957.  https://doi.org/10.1148/90.5.953CrossRefGoogle Scholar
  79. 79.
    Meli J (1995) Source localization. In: Williamson J, Thomadson B, Nath R (Hrsg) Brachytherapy physics. AAPM summer. school, Bd. 1994. Medical Physics Publishing, Madison, S 235–251Google Scholar
  80. 80.
    Meli JA, Meigooni AS, Nath R (1988) On the choice of phantom material for the dosimetry of 192Ir sources. Int J Radiat Oncol Biol Phys 14(3):587–594CrossRefGoogle Scholar
  81. 81.
    Meredith WJ, Paterson R (1967) Radium dosage: the Manchester system. Livingstone, Google Scholar
  82. 82.
    Milickovic N, Lahanas M, Papagiannopoulo M, Zamboglou N, Baltas D (2002) Multiobjective anatomy-based dose optimization for HDR-brachytherapy with constraint free deterministic algorithms. Phys Med Biol 47(13):2263–2280CrossRefGoogle Scholar
  83. 83.
    Muench PJ, Meigooni AS, Nath R, Mclaughlin WL (1991) Photon energy-dependence of the sensitivity of radiochromic film and comparison with silver-halide film and Lif Tlds used for brachytherapy dosimetry. Med Phys 18(4):769–775.  https://doi.org/10.1118/1.596630CrossRefGoogle Scholar
  84. 84.
    Murphy MK, Piper RK, Greenwood LR, Mitch MG, Lamperti PJ, Seltzer SM, Bales MJ, Phillips MH (2004) Evaluation of the new cesium-131 seed for use in low-energy x-ray brachytherapy. Med Phys 31:1529–1538.  https://doi.org/10.1118/1.1755182CrossRefGoogle Scholar
  85. 85.
    Nath R, Anderson LL, Luxton G, Weaver KA, Williamson JF, Meigooni AS (1995) Dosimetry of interstitial brachytherapy sources: recommendations of the AAPM Radiation Therapy Committee Task Group No. 43. Med Phys 22(2):209–234CrossRefGoogle Scholar
  86. 86.
    Nath R, Anderson LL, Meli JA, Olch AJ, Stitt JA, Williamson JF (1997) Code of practice for brachytherapy physics: Report of the AAPM Radiation Therapy Committee Task Group No. 56. Med Phys 24(10):1557–1598.  https://doi.org/10.1118/1.597966CrossRefGoogle Scholar
  87. 87.
    National Nuclear Data Center, Brookhaven National Laboratory Spektren-Datenbank NuDat2. http://www.nndc.bnl.gov/nudat2/. Zugegriffen: 2. Febr. 2017
  88. 88.
    Parker HM (1938) A dosage system for interstitial radium therapy. Part II – physical aspects. Br J Radiol 11(125):313–340CrossRefGoogle Scholar
  89. 89.
    Paterson R, Parker H (1934) A dosage system for gamma ray therapy. Br J Radiol 7(82):578–579CrossRefGoogle Scholar
  90. 90.
    Paterson R, Parker HM (1938) A dosage system for interstitial radium therapy. Br J Radiol 11(124):252–266CrossRefGoogle Scholar
  91. 91.
    Paterson R, Parker H, Spiers F (1936) A dosage system for cylindrical therapy. Br J Radiol 9(104):487–508CrossRefGoogle Scholar
  92. 92.
    Pérez-Calatayud J, Ballester F, Das RK, DeWerd LA, Ibbott GS, Meigooni AS, Ouhib Z, Rivard MJ, Sloboda RS, Williamson JF (2012) Dose calculation for photon-emitting brachytherapy sources with average energy higher than 50 keV: report of the AAPM and ESTRO. Med Phys 39(5):2904–2929CrossRefGoogle Scholar
  93. 93.
    Pierquin B (1964) Précis de curiethérapie: endocuriethérapie, plésiocuriethérapie. Masson, ParisGoogle Scholar
  94. 94.
    Pierquin B, Dutreix A, Paine CH, Chassagne D, Marinello G, Ash D (1978) The Paris system in interstitial radiation therapy. Acta Radiol Oncol Radiat. Phys Biol 17(1):33–48.  https://doi.org/10.3109/02841867809127689CrossRefGoogle Scholar
  95. 95.
    Regaud C (1922) Sevices de Curiethérapie. In: Regaud C, Lacassagne A, Ferroux R (Hrsg) Radiophysiologie et radiothérapie recuil de traveaux biologiques, techniques et thérapeutics. Archives de l’Institut du Radium de L’Université de Paris et de la Fondation Curie. Les Presses Universitaires de France, ParisGoogle Scholar
  96. 96.
    Reich H (1990) Dosimetrie ionisierender Strahlung. Grundlagen und Anwendungen. Teubner, StuttgartGoogle Scholar
  97. 97.
    Rivard MJ, Coursey BM, DeWerd LA, Hanson WF, Saiful Huq M, Ibbott GS, Mitch MG, Nath R, Williamson JF (2004) Update of AAPM task group no. 43 report: a revised AAPM protocol for brachytherapy dose calculations. Med Phys 31(3):633–674CrossRefGoogle Scholar
  98. 98.
    Russell KR, Ahnesjö A (1996) Dose calculation in brachytherapy for a Ir-192 source using a primary and scatter dose separation technique. Phys Med Biol 41(6):1007–1024.  https://doi.org/10.1088/0031-9155/41/6/005CrossRefGoogle Scholar
  99. 99.
    Schoenfeld AA, Harder D, Poppe B, Chofor N (2015) Water equivalent phantom materials for 192Ir brachytherapy. Phys Med Biol 60(24):9403CrossRefGoogle Scholar
  100. 100.
    Schwarz SB, Thon N, Nikolajek K, Niyazi M, Tonn JC, Belka C, Kreth FW (2012) Iodine-125 brachytherapy for brain tumours – a review. Radiat Oncol 7(1):30.  https://doi.org/10.1186/1748-717X-7-30CrossRefGoogle Scholar
  101. 101.
    Shalek RJ, Stovall M (1990) Radiation Dosimetry. In: Kase K, Bjärngard B, Attix F (Hrsg) San Diego, Bd. 3. Academic Press, , S 259–322Google Scholar
  102. 102.
    Sievert RM (1921) Die Intensitätsverteilung der primären \({\upgamma}\)-Strahlung in der Nähe medizinischer Radiumpräparate. Acta Radiol 1:89–128CrossRefGoogle Scholar
  103. 103.
    Stewart A, Parashar B, Patel M, O’Farrell D, Biagioli M, Devlin P, Mutyala S (2016) American Brachytherapy Society consensus guidelines for thoracic brachytherapy for lung cancer. Brachytherapy 15(1):1–11. https://doi.org/10.1016/j.brachy.2015.09.006CrossRefGoogle Scholar
  104. 104.
    Stewart AJ, Mutyala S, Holloway CL, Colson YL, Devlin PM (2009) Intraoperative seed placement for thoracic malignancy – A review of technique, indications, and published literature. Brachytherapy 8(1):63–69.  https://doi.org/10.1016/j.brachy.2008.09.002CrossRefGoogle Scholar
  105. 105.
    Stock RG, Stone NN, Wesson MF, DeWyngaert JK (1995) A modified technique allowing interactive ultrasound-guided three-dimensional transperineal prostate implantation. Int J Radiat Oncol Biol Phys 32(1):219–225. https://doi.org/10.1016/0360-3016(95)00521-YCrossRefGoogle Scholar
  106. 106.
    Taylor REP, Rogers DWO (2013) The CLRP TG-43 parameter database for brachytherapy. Carleton Laboratory for Radiotherapy Physics. http://www.physics.carleton.ca/clrp/seed_database. Zugegriffen: 2. Febr. 2017
  107. 107.
    Thames HD (1985) An “incomplete-repair” model for survival after fractionated and continuous irradiations. Int J Radiat Biol Relat Stud Phys Chem Med 47(3):319–339.  https://doi.org/10.1080/09553008514550461CrossRefGoogle Scholar
  108. 108.
    Thomadson B, Houdek P, van der Laarse R, Edmundson G, Kolkmann-Deurloo I-K, Visser A (1994) Treatment planning and optimization. In: Nag S (Hrsg) High dose rate brachytherapy. A Textbook Futura Publishing Company Inc. , New York, S 79–145Google Scholar
  109. 109.
    Thomadson B, Rivard M, Butler W (2005) Brachytherapy physics, 2. Aufl. AAPM Summer School, Bd. 2005. Medical Physics Publishing, MadisonGoogle Scholar
  110. 110.
    Tod M, Meredith W (1953) Treatment of cancer of the cervix uteri – a revised “Manchester method”. Br J Radiol 26(305):252–257CrossRefGoogle Scholar
  111. 111.
    Tod MC, Meredith WJ (1938) A dosage system for use in the treatment of cancer of the uterine cervix. Br J Radiol 11(132):809–824CrossRefGoogle Scholar
  112. 112.
    Universität Valencia Dosimetry Parameters for source models used in Brachytherapy (GEC-ESTRO Strahlerdatenbank). http://www.uv.es/braphyqs/. Zugegriffen: 30. Jan. 2017
  113. 113.
    Venselaar J, Baltas D, Meigooni A, Hoskin P (2013) Comprehensive brachytherapy: physical and clinical aspects. CRC Press, Boca Raton, LondonGoogle Scholar
  114. 114.
    Vicini F, White J, Gustafson G, Matter RC, Clarke DH, Edmundson G, Martinez A (1993) The use of iodine-125 seeds as a substitute for iridium-192 seeds in temporary interstitial breast implants. Int J Radiat Oncol Biol Phys 27(3):561–566CrossRefGoogle Scholar
  115. 115.
    Williamson J, Thomadson B, Nath R (1995) Brachytherapy physics. AAPM summer. school, Bd. 1994. Medical Physics Publishing, MadisonGoogle Scholar
  116. 116.
    Williamson JF, Morin RL, Khan FM (1983) Monte Carlo evaluation of the Sievert integral for brachytherapy dosimetry. Phys Med Biol 28(9):1021–1032CrossRefGoogle Scholar
  117. 117.
    Wu A, Zwicker RD, Sternick ES (1985) Tumor dose specification of I-125 seed implants. Med Phys 12(1):27–31.  https://doi.org/10.1118/1.595733CrossRefGoogle Scholar
  118. 118.
    Yu Y, Anderson LL, Li Z, Mellenberg DE, Nath R, Schell MC, Waterman FM, Wu A, Blasko JC (1999) Permanent prostate seed implant brachytherapy: Report of the American Association of Physicists in Medicine Task Group No. 64. Med Phys 26(10):2054–2076CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature 2018

Authors and Affiliations

  • Frank Hensley
    • 1
  1. 1.Radioonkologie und StrahlentherapieUniversitätsklinikum HeidelbergHeidelbergDeutschland

Personalised recommendations