Advertisement

High-performance and elite sports

  • Silvia Achtzehn
  • Holger Broich
  • Joachim Mester

Abstract

For many years, POCT devices have been employed alongside central laboratory methods to analyze biomarkers in high-performance and elite sports. However, there has been a paucity of publications to date on studies in high-performance and elite athletes where POCT is explicitly mentioned as measuring methodology. For this reason, the present chapter aims to provide an overview of the different areas such studies have focused on. The advantage of POCT methods in high-performance and elite sports is that the tests can be performed on capillary blood samples using transportable devices without specialized medical and laboratory personnel. In essentially every athletic setting, POCT can be employed for measuring biomarkers in athletes to document their health and performance status, to optimize their training routines, to promote endurance and regeneration, while helping prevent overexertion.

References

  1. 1.
    Achtzehn S (2013) Hämoglobinkonzentrationen, Hämatokrit-Werte und Retikulozyten in der Sportwissenschaft. Der Andere Verlag, UelvesbüllGoogle Scholar
  2. 2.
    Arakawa K, Hosono A, Shibata K et al. (2016) Changes in blood biochemical markers before, during, and after a 2-day ultramarathon. Open Access J Sports Med 7: 43–50Google Scholar
  3. 3.
    Banfi G, Colombini A, Lombardi G et al. (2012) Metabolic markers in sports medicine. Adv Clin Chem 56: 1–54Google Scholar
  4. 4.
    Banfi G, Del F M, Lippi G (2009) Serum creatinine concentration and creatinine-based estimation of glomerular filtration rate in athletes. Sports Med 39(4): 331–337CrossRefPubMedGoogle Scholar
  5. 5.
    Banfi G, Lippi G, Susta D et al. (2010) NT-proBNP concentrations in mountain marathoners. J Strength Cond Res 24(5): 1369–1372CrossRefPubMedGoogle Scholar
  6. 6.
    Bassett J R, Howley E T (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32(1): 70–84Google Scholar
  7. 7.
    Born D P, Faiss R, Willis S J et al. (2016) Circadian variation of salivary immunoglobin A, alpha-amylase activity and mood in response to repeated double-poling sprints in hypoxia. Eur J Appl Physiol 116(1): 1–10CrossRefPubMedGoogle Scholar
  8. 8.
    Brancaccio P, Lippi G, Maffulli N (2010) Biochemical markers of muscular damage. Clin Chem Lab Med 48(6): 757–767Google Scholar
  9. 9.
    Brancaccio P, Maffulli N, Buonauro R et al. (2008) Serum enzyme monitoring in sports medicine. Clin Sports Med 27(1): 1–18, viiCrossRefPubMedGoogle Scholar
  10. 10.
    Brentano M A, Martins K L F (2011) A review on strength exercise-induced muscle damage: applications, adaptation mechanisms and limitations. J Sports Med Phys Fitness 51(1): 1–10Google Scholar
  11. 11.
    Burden R J, Morton K, Richards T et al. (2015) Is iron treatment beneficial in, iron-deficient but non-anaemic (IDNA) endurance athletes? A systematic review and meta-analysis. Br J Sports Med 49(21): 1389–1397CrossRefPubMedGoogle Scholar
  12. 12.
    Burge C M, Skinner S L (1995) Determination of hemoglobin mass and blood volume with CO: evaluation and application of a method. J Appl Physiol (1985) 79(2): 623–631CrossRefPubMedGoogle Scholar
  13. 13.
    Chlíbková D, Knechtle B, Rosemann T et al. (2015) Rhabdomyolysis and exercise-associated hyponatremia in ultra-bikers and ultra-runners. J Int Soc Sports Nutr 12: 29Google Scholar
  14. 14.
    Coad S, Mclellan C, Whitehouse T et al. (2015) Validity and reliability of a novel salivary immunoassay for individual profiling in applied sports science. Res Sports Med 23(2): 140–150CrossRefPubMedGoogle Scholar
  15. 15.
    Dill D B, Costill D L (1974) Calculation of percentage changes in volumes of blood, plasma, and red cells in dehydration. J Appl Physiol 37(2): 247–248CrossRefPubMedGoogle Scholar
  16. 16.
    Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39(6): 469–490CrossRefPubMedGoogle Scholar
  17. 17.
    Faude O, Meyer T (2008) Methodische Aspekte der Laktatbestimmung. [Methodological Aspects of Lactate Determination]. Dtsch Z Sportmed 59(12)Google Scholar
  18. 18.
    Gladden L B (2004) Lactate metabolism: a new paradigm for the third millennium. J Physiol 558 (Pt 1): 5–30CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Gomes R V, Moreira A, Lodo L et al. (2013) Monitoring training loads, stress, immune-endocrine responses and performance in tennis players. Biol Sport 30(3): 173–180CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Halson SL (2014) Monitoring Training Load to Understand Fatigue in Athletes. Sports Med 44(S2): 139–147CrossRefGoogle Scholar
  21. 21.
    Harper LD, Clifford T, Briggs MA et al. (2015) The effects of 120 minutes of simulated match-play on indices of acid-base balance in professional academy soccer players. J Strength Cond ResGoogle Scholar
  22. 22.
    Heck H, Beneke R (2008) 30 Jahre Laktatschwellen – was bleibt zu tun? Dtsch Z Sportmed 59(12): 297–302Google Scholar
  23. 23.
    Heinicke K, Wolfarth B, Winchenbach P et al. (2001) Blood volume and hemoglobin mass in elite athletes of different disciplines. Int J Sports Med 22(7): 504–512CrossRefPubMedGoogle Scholar
  24. 24.
    Hinton P S (2014) Iron and the endurance athlete. Appl Physiol Nutr Metab 39(9): 1012–1018CrossRefPubMedGoogle Scholar
  25. 25.
    Hurley BF, Redmond R A, Pratley R E et al. (1995) Effects of strength training on muscle hypertrophy and muscle cell disruption in older men. Int J Sports Med 16(6): 378–384CrossRefPubMedGoogle Scholar
  26. 26.
    Kahanov L, Eberman LE, Townsend C M et al. (2012) Creatine Kinase and Myoglobin as biochemical markers of muscle damage in division-1 collegiate football players. Online Journal of Medicine and Medical Science Research 1(5)Google Scholar
  27. 27.
    Kasprowicz K, Ziemann E, Ratkowski W et al. (2013) Running a 100-km ultra-marathon induces an inflammatory response but does not raise the level of the plasma iron-regulatory protein hepcidin. J Sports Med Phys Fitness 53(5): 533–537Google Scholar
  28. 28.
    Kemmler W, Teschler M, Bebenek M et al. (2015) (Very) high Creatinkinase concentration after exertional whole-body electromyostimulation application: health risks and longitudinal adaptations. Wien Med Wochenschr 165(21–22): 427–435CrossRefPubMedGoogle Scholar
  29. 29.
    Kindermann W (2004) Anaerobe Schwelle. Dtsch Z Sportmed 55(6): 161–162Google Scholar
  30. 30.
    Kratz A, Lewandrowski KB, Siegel A J et al. (2002) Effect of marathon running on hematologic and biochemical laboratory parameters, including cardiac markers. Am J Clin Pathol 118(6): 856–863CrossRefPubMedGoogle Scholar
  31. 31.
    Mader A, Liesen H, Heck H et al. (1976) Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Sportarzt und Sportmedizin (27)Google Scholar
  32. 32.
    Mathes S, Mester J, Bloch W et al. (2017) Impact of high-intensity and high-volume exercise on short-term perturbations in the circulating fraction of different cell types. J Sports Med Phys Fitness 57: 130–137Google Scholar
  33. 33.
    McKune A, Starzak D, Semple S (2015) Repeated bouts of eccentrically biased endurance exercise stimulate salivary IgA secretion rate. Biol Sport 32(1): 21–25CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Menzel K, Hilberg T (2011) Blood coagulation and fibrinolysis in healthy, untrained subjects: effects of different exercise intensities controlled by individual anaerobic threshold. Eur J Appl Physiol 111(2): 253–260CrossRefPubMedGoogle Scholar
  35. 35.
    Meyer T, Kellmann M, Ferrauti A et al. (2013) Die Messung von Erholtheit und Regenerationsbedarf im Fußball. [The Measurement of Recovery and Regeneration Requirements in Football.] Dtsch Z Sportmed 2013(01): 28–34CrossRefGoogle Scholar
  36. 36.
    Meyer T, Meister S (2011) Routine blood parameters in elite soccer players. Int J Sports Med 32(11): 875–881CrossRefPubMedGoogle Scholar
  37. 37.
    Michielsen, Etienne CHJ, Wodzig, Will KWH, van Dieijen-Visser M P (2008) Cardiac troponin T release after prolonged strenuous exercise. Sports Med 38(5): 425–435CrossRefPubMedGoogle Scholar
  38. 38.
    Mohr M, Draganidis D, Chatzinikolaou A et al. (2016) Muscle damage, inflammatory, immune and performance responses to three football games in 1 week in competitive male players. Eur J Appl Physiol 116(1): 179–193CrossRefPubMedGoogle Scholar
  39. 39.
    Mougios V (2007) Reference intervals for serum creatine kinase in athletes. Br J Sports Med 41(10): 674–678CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Neubauer O, Konig D, Wagner K H (2008) Recovery after an Ironman triathlon: sustained inflammatory responses and muscular stress. Eur J Appl Physiol 104(3): 417–426CrossRefPubMedGoogle Scholar
  41. 41.
    Neumayr G, Pfister R, Hoertnagl H et al. (2005) Renal function and plasma volume following ultramarathon cycling. Int J Sports Med 26(1): 2–8CrossRefPubMedGoogle Scholar
  42. 42.
    Owen A L, Wong D P, Dunlop G et al. (2014) High intensity training and salivary immunoglobulin-a responses in professional top-level soccer players: effect of training intensity. J Strength Cond Res 30(9): 2460–2469Google Scholar
  43. 43.
    Papacosta E, Nassis GP (2011) Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J Sci Med Sport 14(5): 424–434CrossRefPubMedGoogle Scholar
  44. 44.
    Peake J, Nosaka K, Suzuki K (2005) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11: 64–85Google Scholar
  45. 45.
    Peeling P, Dawson B, Goodman C et al. (2008) Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol 103(4): 381–391CrossRefPubMedGoogle Scholar
  46. 46.
    Regwan S, Hulten E A, Martinho S et al. (2010) Marathon running as a cause of troponin elevation: a systematic review and meta-analysis. J Interv Cardiol 23(5): 443–450CrossRefPubMedGoogle Scholar
  47. 47.
    Röcker K, Dickhuth H-H (2001) Praxis der Laktatmessung. Dtsch Z Sportmed 52(1): 33–34Google Scholar
  48. 48.
    Sawka MN, Convertino VA, Eichner ER et al. (2000) Blood volume: importance and adaptations to exercise training, environmental stresses, and trauma/sickness. Med Sci Sports Exerc 32(2): 332–348CrossRefGoogle Scholar
  49. 49.
    Scharhag J, Urhausen A, Schneider G et al. (2006) Reproducibility and clinical significance of exercise-induced increases in cardiac troponins and N-terminal pro brain natriuretic peptide in endurance athletes. Eur J Cardiovasc Prev Rehabil 13(3): 388–397CrossRefGoogle Scholar
  50. 50.
    Schmidt W (1999) Die Bedeutung des Blutvolumens für den Ausdauersportler. Dtsch Z Sportmed 11+12: 341–349Google Scholar
  51. 51.
    Schmidt W, Prommer N (2005) The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol 95(5–6): 486–495CrossRefPubMedGoogle Scholar
  52. 52.
    Schmidt W, Prommer N (2010) Impact of alterations in total hemoglobin mass on VO2max. Exerc Sport Sci Rev 38(2): 68–75CrossRefPubMedGoogle Scholar
  53. 53.
    Schulpis K H, Tsironi M, Skenderi K et al. (2008) Dramatic reduction of erythrocyte glucose-6-phosphate dehydrogenase activity in athletes participating in the ultradistance foot race “Spartathlon”. Scand J Clin Lab Invest 68(3): 228–232CrossRefPubMedGoogle Scholar
  54. 54.
    Shaskey D J, Green G A (2000) Sports haematology. Sports Med 29(1): 27–38CrossRefPubMedGoogle Scholar
  55. 55.
    Shin K-A, Park KD, Ahn J et al. (2016) Comparison of changes in biochemical markers for skeletal muscles, hepatic metabolism, and renal function after three types of long-distance running: Observational study. Medicine (Baltimore) 95(20): e3657CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Sperlich B (2016) Exercise physiology – integrative & experimental. Dtsch Z Sportmed 2016(02): 25–26CrossRefGoogle Scholar
  57. 57.
    Sperlich B, Achtzehn S, Marées M de et al. (2016) Load management in elite German distance runners during 3-weeks of high altitude training. Physiol Rep 4(12): e12845CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Sumann G, Fries D, Griesmacher A et al. (2007) Blood coagulation activation and fibrinolysis during a downhill marathon run. Blood Coagul Fibrinolysis 18(5): 435–440CrossRefGoogle Scholar
  59. 59.
    Tchou I, Margeli A, Tsironi M et al. (2009) Growth-differentiation factor-15, endoglin and N-terminal pro-brain natriuretic peptide induction in athletes participating in an ultramarathon foot race. Biomarkers 14(6): 418–422CrossRefPubMedGoogle Scholar
  60. 60.
    Vincent HK, Vincent K R (1997) The effect of training status on the serum creatine kinase response, soreness and muscle function following resistance exercise. Int J Sports Med 18(6): 431–437CrossRefGoogle Scholar
  61. 61.
    Wagner S, Knechtle B, Knechtle P et al. (2012) Higher prevalence of exercise-associated hyponatremia in female than in male open-water ultra-endurance swimmers: the ‘Marathon-Swim’ in Lake Zurich. Eur J Appl Physiol 112(3): 1095–1106CrossRefPubMedGoogle Scholar
  62. 62.
    Wahl P, Bloch W, Mester J (2009) Moderne Betrachtungsweisen des Laktats: Laktat ein überschätztes und zugleich unterschätztes Molekül. Schweizerische Zeitschrift für Sportmedizin und Sporttraumatologie 57(3)Google Scholar
  63. 63.
    Wahl P, Hein M, Achtzehn S et al. (2015) Acute effects of superimposed electromyostimulation during cycling on myokines and markers of muscle damage. J Musculoskelet Neuronal Interact 15(1): 53–59Google Scholar
  64. 64.
    Wahl P, Mathes S, Köhler K et al. (2013) Acute metabolic, hormonal, and psychological responses to different endurance training protocols. Horm Metab Res 45(11): 827–833CrossRefPubMedGoogle Scholar
  65. 65.
    Walsh NP, Gleeson M, Pyne DB et al. (2011) Position statement. Part two: Maintaining immune health. Exerc Immunol Rev 17: 64–103Google Scholar
  66. 66.
    Weippert M, Divchev D, Schmidt P et al. (2016) Cardiac troponin T and echocardiographic dimensions after repeated sprint vs. moderate intensity continuous exercise in healthy young males. Sci Rep 6: 24614Google Scholar
  67. 67.
    Weiss C, Bärtsch P (2003) Aktivierung der Blutgerinnung und Fibrinolyse durch körperliche Belastung. Dtsch Z Sportmed 54(5): 130–135Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Silvia Achtzehn
    • 1
  • Holger Broich
    • 2
  • Joachim Mester
    • 1
  1. 1.Deutsche Sporthochschule KölnInstitut für Trainingswissenschaft und ­SportinformatikKölnGermany
  2. 2.HeidelbergGermany

Personalised recommendations