Advertisement

Infectious diseases

  • Enno Stürenburg
  • Frank Hufert

Abstract

The measurement of biochemical parameters such as blood glucose, blood gases, electrolytes and cardiac markers have particularly benefited from recent advances in POCT. More and more, this form of analysis is now positively impacting the field of infectious diseases. Many microbiological POCT systems tend to be designed as rapid tests. In general, such tests can be carried out in a few simple steps by medical assistants or physicians without laboratory equipment or laboratory experience. It is even possible for the patients themselves to perform a series of such tests.

References

  1. 1.
    Abd El Wahed A, El-Deeb A, El-Tholoth M, et al. (2013) A Portable Reverse Transcription Recombinase Polymerase Amplification Assay for Rapid Detection of Foot-and-Mouth Disease Virus. PLoS One 8:e71642CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Abd El Wahed A, Patel P, Faye O, et al. (2015) Recombinase Polymerase Amplification Assay for Rapid Diagnostics of Dengue Infection. PLoS One:e0129682CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Abd El Wahed A, Patel P, Heidenreich D, Hufert FT, Weidmann M (2013) Reverse transcription recombinase polymerase amplification assay for the detection of middle East respiratory syndrome coronavirus. PLoS Curr 5Google Scholar
  4. 4.
    Abd El Wahed A, Weidmann M, Hufert FT (2015) Diagnostics-in-a-Suitcase: Development of a portable and rapid assay for the detection of the emerging avian influenza A (H7N9) virus. J Clin Virol 69:16–21CrossRefPubMedGoogle Scholar
  5. 5.
    Adcock PM, Stout GG, Hauck MA et al. (1997) Effect of rapid viral diagnosis on the management of children hospitalized with lower respiratory tract infection. Pediatr Infect Dis 16: 842–846CrossRefPubMedGoogle Scholar
  6. 6.
    Bon F, Kaplon J, Metzger MH, Pothier P (2007) Evaluation of seven immunochromatographic assays for the rapid detection of human rotaviruses in fecal specimens. Pathol Biol (Paris) 55: 149–153Google Scholar
  7. 7.
    Bosevska G, Panovski N, Janceska E, Mikik V, Topuzovska IK, Milenkovik Z (2015) Comparison of Directigen Flu A+B with Real Time PCR in the Diagnosis of Influenza. Folia Med (Plovdiv) 57:104–110Google Scholar
  8. 8.
    Brandt CD, Arndt CW, Evans GL et al. (1987) Evaluation of a latex test for rotavirus detection. J Clin Microbiol 25: 8000–8002Google Scholar
  9. 9.
    Branson BM (2003) Point-of-care rapid tests for HIV antibody. J Lab Med 27: 288–295Google Scholar
  10. 10.
    Bruu AL, Hjetland R, Holter E et al. (2000) Evaluation of 12 commercial tests for detection of Epstein-Barr virus-specific and heterophile antibodies. Clin Diagn Lab Immunol 7: 451–456CrossRefGoogle Scholar
  11. 11.
    Cruciani M, Nardi S, Malena M, Bosco O, Serpelloni G, Mengoli C (2004) Systematic review of the accuracy of the ParaSight-F test in the diagnosis of Plasmodium falciparum malaria. Med Sci Monit 10: MT81–MT88Google Scholar
  12. 12.
    Escadafal C, Faye O, Sall AA, et al. (2014) Rapid molecular assays for the detection of yellow fever virus in low-resource settings. PLoS Negl Trop Dis 8:e2730CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Euler M, Wang Y, Heidenreich D, et al. (2013) Development of a panel of recombinase polymerase amplification assays for detection of biothreat agents. J Clin Microbiol 51:1110–1117CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Ewig S, Tuschy P, Fätkenheuer G (2002) Diagnosis and treatment of Legionella pneumonia. Pneumologie 56: 695–703CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Farhat SE, Finn S, Chua R et al. (1993) Rapid detection of infectious mononucleosis-associated heterophile antibodies by a novel immunochromatographic assay and a latex agglutination test. J Clin Microbiol 31: 1597–1600Google Scholar
  16. 16.
    Faye O, Faye O, Soropogui B, et al. (2015) Development and deployment of a rapid recombinase polymerase amplification Ebola virus detection assay in Guinea in 2015. Euro Surveill 20Google Scholar
  17. 17.
    Friedewald S, Finke EJ, Dobler G (2006) Near patient testing in exceptional situations. J Lab Med 30: 211–218Google Scholar
  18. 18.
    Gatti S, Gramegna M, Bisoffi Z et al. (2007) A comparison of three diagnostic techniques for malaria: a rapid diagnostic test (NOW Malaria), PCR and microscopy. Ann Trop Med Parasitol 101: 195–204CrossRefGoogle Scholar
  19. 19.
    Gutiérrez F, Masiá M, Rodriguez JC et al. (2003) Evaluation of the immunochromatographic Binax NOW assay for detection of Streptococcus pneumoniae urinary antigen in a prospective study of community-acquired pneumonia in Spain. Clin Infect Dis 36: 286–292CrossRefPubMedCentralPubMedGoogle Scholar
  20. 20.
    Gutierrez J, Rodriquez M, Maroto C, Piedrola G (1997) Reliability of four methods for the diagnosis of acute infection by Epstein-Barr virus. J Clin Lab Anal 11: 78–81CrossRefPubMedCentralPubMedGoogle Scholar
  21. 21.
    Honest H, Sharma S, Khan KS (2006) Rapid tests for group B streptococcus colonization in laboring women: a systematic review. Pediatrics 117: 1055–1066CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    Iqbal J, Khalid N, Hira PR (2002) Comparison of two commercial assays with expert microscopy for confirmation of symptomatically diagnosed malaria. J Clin Microbiol 40: 4675–4678CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Jokela P, Vuorinen T, Waris M, Manninen R (2015) Performance of the Alere i influenza A&B assay and mariPOC test for the rapid detection of influenza A and B viruses. J Clin Virol 70:72–76CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Junker R, Schlebusch H, Luppa PB (2010) Point-of-care testing in hospitals and primary care. Dtsch Ärztebl Int 107:561–567Google Scholar
  25. 25.
    Kehl KS, Havens P, Behnke CE, Acheson DW (1997) Evaluation of the premier EHEC assay for detection of Shiga toxin-producing Escherichia coli. J Clin Microbiol 35: 2051–2054Google Scholar
  26. 26.
    Kumar A, Roberts D, Wood KE et al. (2006) Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med 34: 1589–1596CrossRefPubMedGoogle Scholar
  27. 27.
    Lasocki S, Scanvic A, LeTurdu F et al. (2006) Evaluation of the Binax NOW Streptococcus pneumoniae urinary antigen assay in intensive care patients hospitalized for pneumonia. Intensive Care Med 32: 1766–1772CrossRefPubMedGoogle Scholar
  28. 28.
    Mackenzie AM, Lebel P, Orrbine PC et al. (1998) Sensitivities and specificities of premier E. coli O157 and premier EHEC enzyme immunoassays for diagnosis of infection with verotoxin (Shiga-like toxin)-producing Escherichia coli. The SYNSORB Pk Study investigators. J Clin Microbiol 36: 1608–1611Google Scholar
  29. 29.
    Mahilum-Tapay L, Laitila V, Wawrzyniak JJ et al. (2007) New point of care chlamydia rapid test – bridging the gap between diagnosis and treatment: performance evaluation study. BMJ 335: 1190–1194CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Nguyen TA, Khamrin P, Takanashi S et al. (2007) Evaluation of immunochromatography tests for detection of rotavirus and norovirus among Vietnamese children with acute gastroenteritis and the emergence of a novel norovirus GII.4 variant. J Trop Pediatr 53: 264–269CrossRefPubMedGoogle Scholar
  31. 31.
    Nguyen Van JC, Camelena F, Dahoun M, et al. (2016) Prospective evaluation of the Alere i Influenza A&B nucleic acid amplification versus Xpert Flu/RSV. Diagn Microbiol Infect Dis 85(1):19–22CrossRefPubMedGoogle Scholar
  32. 32.
    Nicholson KG, Aoki FY, Osterhaus AD et al. (2000) Efficacy and safety of oseltamivir in treatment of acute influenza: a rondomized controlled trail. Neuraminidase inhibitor flu treatment investigator group. Lancet 355: 1845–1850Google Scholar
  33. 33.
    O’Connor D, Hynes P, Cormican M, Collins E, Corbett-Feeney G, Cassidy M (2001) Evaluation of methods for detection of toxins in specimens of feces submitted for diagnosis of Clostridium difficile-associated diarrhea. J Clin Microbiol 39: 2846–2849CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Palmer CJ, Lindo JF, Klaskala WI et al. (1998) Evaluation of the OptiMAL test for rapid diagnosis of Plasmodium vivax and Plasmodium falciparum malaria. J Clin Microbiol 36: 203–206Google Scholar
  35. 35.
    Rani R, Corbitt G, Killough R, Curless E (2002) Is there any role for rapid tests for Chlamydia trachomatis? Int J STD AIDS 13: 22–24CrossRefGoogle Scholar
  36. 36.
    Reinert RR (2007) Rapid streptococcal antigen detection tests. J Lab Med 31: 280–293Google Scholar
  37. 37.
    Saison F, Mahilum-Tapay L, Michel CE et al. (2007) Prevalence of Chlamydia trachomatis infection among low- and high-risk Filipino women and performance of Chlamydia rapid tests in resource-limited settings. J Clin Microbiol 45: 4011–4017CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Schmidt WP (2003) Malaria rapid tests – perspectives for malaria endemic and non-endemic regions. J Lab Med 296–301Google Scholar
  39. 39.
    Schweiger B (2006) Influenza rapid tests – advantages and limitations. J Lab Med 30: 219–225Google Scholar
  40. 40.
    Smith MD, Derrington P, Evans R et al. (2003) Rapid diagnosis of bacteremic pneumococcal infections in adults by using the Binax NOW Streptococcus pneumoniae urinary antigen test: a prospective, controlled clinical evaluation J Clin Microbiol 41: 2810–2813CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Stürenburg E (2009) Rapid detection of methicillin-resistant Staphylococcus aureus directly from clinical samples: methods, effectiveness and cost considerations. Ger Med Sci 7:Doc06Google Scholar
  42. 42.
    Svahn A, Magnusson M, Jägdahl L, Schloss L, Kahlmeter G, Linde A (1997) Evaluation of three commercial enzyme-linked immunosorbent assays and two latex agglutination assays for diagnosis of primary Epstein-Barr virus infection. J Clin Microbiol 35: 2728–2732Google Scholar
  43. 43.
    Swain GR, McDonald RA, Pfister RJ, Gradus MS, Sedmak GV, Singh A (2004) Decision analysis: point-of-care chlamydia testing vs. laboratory-based methods. Clin Med Res 1: 29–35CrossRefGoogle Scholar
  44. 44.
    Teel LD, Daly JA, Jerris RC et al. (2007) Rapid detection of Shiga toxin-producing Escherichia coli by optical immunoassay. J Clin Microbiol 45: 3377–3380CrossRefPubMedCentralPubMedGoogle Scholar
  45. 45.
    van den Berg RJ, Bruijnnesteijn van Coppenraet LS, Gerritsen HJ, Endtz HP, van der Vorm ER, Kuijper EJ (2005) Prospective multicenter evaluation of a new immunoassay and real-time PCR for rapid diagnosis of Clostridium difficile-associated diarrhea in hospitalized patients. J Clin Microbiol 43: 5338–5340Google Scholar
  46. 46.
    Vanpoucke H, De Baere T, Claeys G et al. (2001) Evaluation of six commercial assays for the rapid detection of Clostridium difficile toxin and/or antigen in stool specimens. Clin Microbiol Infect 7: 55–64CrossRefPubMedGoogle Scholar
  47. 47.
    Warpakowski A (2006) Ärztezeitung online. Schnelltest – mehr Patienten erfahren HIV-Status. Edition of 21 August 2006; https://www.aerztezeitung.de/medizin/krankheiten/infektionskrankheiten/aids/article/415433/schnelltest-patienten-erfahren-hiv-status.html
  48. 48.
    Weitzel T, Reither K, Mockenhaupt FP et al. (2007) Field evaluation of a rota- and adenovirus immunochromatographic assay using stool samples from children with acute diarrhea in Ghana. J Clin Microbiol 45: 2695–2697CrossRefPubMedCentralPubMedGoogle Scholar
  49. 49.
    Widjaja S, Cohen S, Brady WE et al. (1999) Evaluation of a rapid assay for detection of Chlamydia trachomatis infections in outpatient clinics in South Kalimantan, Indonesia. J Clin Microbiol 37: 4183–4185Google Scholar
  50. 50.
    Yin YP, Peeling RW, Chen XS et al. (2006) Clinic-based evaluation of Clearview Chlamydia MF for detection of Chlamydia trachomatis in vaginal and cervical specimens from women at high risk in China. Sex Transm Infect 82 (Suppl 5): v33–v37CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Enno Stürenburg
    • 1
  • Frank Hufert
    • 2
  1. 1.Dr. Staber & KollegenHamburgGermany
  2. 2.Medizinische Hochschule Brandenburg Theodor Fontane, Standort Senftenberg, B-TU Campus 15Institut für Mikrobiologie und VirologieSenftenbergGermany

Personalised recommendations