Advertisement

Niederschlag, Wasserkreislauf, Klimazonen

  • Walter Roedel
  • Thomas Wagner
Chapter

Zusammenfassung

In diesem Kapitel wird der atmosphärische Wasserhaushalt und die damit verbundenen klimatischen Aspekte behandelt. Neben den globalen Aspekten werden auch mikrophysikalische Mechanismen wie Kondensation und Niederschlagsbildung sowie die Auswaschwirksamkeit des Niederschlags für atmosphärische Spurenstoffe und die Hydrometeorologie der schweren Wasserisotope HDO und H218O besprochen.

Literatur

  1. Battan LJ, Reitan CH (1957) Artificial stimulation of rain. Pergamon, New YorkGoogle Scholar
  2. Baumgartner A, Reichel E (1975) Die Weltwasserbilanz. Oldenbourg, MünchenGoogle Scholar
  3. Beard KV (1976) Terminal velocity and shape of cloud and precipitation drops aloft. J Atmos Sci 33:851–864CrossRefGoogle Scholar
  4. Beard KV, Grover SN (1974) Numerical collision efficiencies for small raindrops colliding with micron size particles. J Atmos Sci 31:543–550CrossRefGoogle Scholar
  5. Beard KV, Ochs HT (1984) Collection and coalescence efficiencies for accretion. J Geophys Res 89:7165–7169CrossRefGoogle Scholar
  6. Blüthgen J, Weischet W (1980) Allgemeine Klimageographie. De Gruyter, BerlinGoogle Scholar
  7. Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703CrossRefGoogle Scholar
  8. Dansgaard W (1964) Stabile isotopes in precipitation. Tellus 16:436–468CrossRefGoogle Scholar
  9. Dansgaard W, Johnsen SJ, Clausen HB, Gundestrup N (1973) Stable isotope glaciology. Medd Grnl 197:1–53Google Scholar
  10. Diem M (1968) Zur Struktur der Niederschläge, III. Regen in der arktischen, gemäßigten und tropischen Zone. Arch Meteor Geophys Bioklimatol B 16:347–390Google Scholar
  11. Engelmann RJ (1970) Scavenging prediction using ratios of concentrations in air and precipitation. In: Engelmann RJ, Slinn WGN (Hrsg) Precipitation Scavenging. AEC Symp Ser 22. U. S. Atomic Energy Commission, Oak Ridge, S 475–485Google Scholar
  12. Flohn H (1974) Vom Regenmacher zum Wettersatelliten. Kindler, Frankfurt/Main, als Taschenbuch: Fischer, Nr. 6252, StuttgartGoogle Scholar
  13. Georgii HW (1982) Global distribution of the acidity in precipitation. In: Georgii HW, Pankrath J (Hrsg) Deposition of atmospheric pollutants. Reidel, Dordrecht, S 55–66CrossRefGoogle Scholar
  14. Goldsmith P, Delafield HJ, Cox LC (1961) Measurement of the deposition of submicron particles in the gradient of vapour pressure and of the efficiency of this mechanism in the capture of particulate matter by cloud droplets in nature. Geofis Pura Appl 50:278–280CrossRefGoogle Scholar
  15. Gunn R, Kinzer GD (1949) The terminal velocity of fall for water drops in stagnant air. J Meteorol 6:243–248Google Scholar
  16. Haude W (1954) Zur praktischen Bestimmung der aktuellen und potentiellen Evaporation und Evapotranspiration. Mitt Dtsch Wetterdienst 8:3–11Google Scholar
  17. Heikes BG, Thompson AM (1983) Effects of heterogeneous processes in NO3, HONO, and HNO3 chemistry in the troposphere. J Geophys Res 88:10883–10895Google Scholar
  18. Hidy GM, Brock JR (1970) The dynamics of aerocolloidal systems. Pergamon, OxfordGoogle Scholar
  19. Hinzpeter M (1958) The influence of meteorological parameters on the propagation of radioactive fission products in the biosphere. Proc II Int Conf Peaceful Uses of Atomic Energy, Vol. 18. United Nations, New York, S 284Google Scholar
  20. Jacob H, Sonntag C (1991) An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany. Tellus 43B: 291–300Google Scholar
  21. Johnsen SJ, Dansgaard W, Clausen HB, Langway CC (1972) Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature (London) 235:429–434CrossRefGoogle Scholar
  22. Junge CE (1963) Air chemistry and radioactivity. Academic Press, New YorkGoogle Scholar
  23. Junge CE (1975) Processes responsible for the trace content in precipitation. Vortrag XVI. General Assembly of I.U.G.G., GrenobleGoogle Scholar
  24. Klett JD, Davis MH (1973) Theoretical collision efficiencies of cloud droplets at small reynolds numbers. J Atmos Sci 30:107–117CrossRefGoogle Scholar
  25. Korzun VI, Sokolov AA, Budyko MI, Voskresensky KP, Kalinin GP, Konoplyantsev AA, Korotkevich ES & L’vovitch MI (Hrsg) (1974) Atlas of world water balance. USSR National Committee for the International Hydrological Decade. English translation. The UNESCO Press, ParisGoogle Scholar
  26. Majoube M (1971) Fractionnement en oxygène 18 et en deutrium entre l’eau et sa vapeur. J Chim Phys 10:1423–1436CrossRefGoogle Scholar
  27. Mason BJ (1971) The physics of clouds. Clarendon, OxfordGoogle Scholar
  28. McMahon TA, Denison PJ (1979) Empirical atmospheric deposition parameters – a survey. Atmos Environ 13:571–585CrossRefGoogle Scholar
  29. Merlivat L (1978) Molecular diffusivities of H216O, HD16O, and H218O in gases. J Chem Phys 69:2864–2871Google Scholar
  30. Möller F (1973) Einführung in die Meteorologie, 2 Bd. BI-Hochschultaschenbücher Nr.276 u. Nr.288. Bibliogr Inst, MannheimGoogle Scholar
  31. Peirson DH, Cambray RS (1965) Fission product fallout from the nuclear explosions of 1961 and 1962. Nature (London) 205:433–440CrossRefGoogle Scholar
  32. Peirson DH, Cawse PA, Salmon L, Cambray RS (1973) Trace elements in the atmospheric environment. Nature (London) 241:252–256CrossRefGoogle Scholar
  33. Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc Roy Soc A 193:120–145CrossRefGoogle Scholar
  34. Perseke C (1982) Composition of acid rain in the Federal Republic of Germany – Spatial and temporal variations during the period 1979–1981. In: Georgii HW, Pankrath J (Hrsg) Deposition of atmospheric pollutants. Reidel, Dordrecht, S 77–86CrossRefGoogle Scholar
  35. Pruppacher HR, Klett JD (1978) Microphysics of atmospheric clouds and precipitation. Reidel, DordrechtGoogle Scholar
  36. Richards LW (1983) Comments on the oxidation of NO2 to nitrate – day and night. Atmos Environ 17:397–402CrossRefGoogle Scholar
  37. Rogers RR, Yau MK (1989) A short course in cloud physics. Pergamon, OxfordGoogle Scholar
  38. Schwartz SE (1986) Mass-transport considerations pertinent to aqueous phase reaction of gases in liquid-water clouds. In: Jaeschke W (Hrsg) Chemistry of multiphase systems, NATO ASI Ser, Vol. G6, Springer, Berlin Heidelberg New York Tokyo, pp 415–471CrossRefGoogle Scholar
  39. Sellers WD (1965) Physical Climatology. University Chicago Press, ChicagoGoogle Scholar
  40. Sonntag C, Klitzsch E, Löhnert EP, El Shazly EM, Münnich KO, Junghans C, Thorweihe U, Weistroffer K, Swailem FM (1979) Paleoclimatic information from deuterium and oxygen-18 in C-14 dated North Saharian groundwaters. Groundwater formation in the past. In: Isotope hydrology 1978, Bd 2. IAEA, Vienna, S 569–581Google Scholar
  41. Sonntag C, Münnich KO, Jacob H, Rozanski K (1983) Variations of deuterium and oxygen-18 in continental precipitation and groundwater, and their causes. In: Street-Perrott LA, Beran M, Ratcliffe R (Hrsg) Variations in the global water budget. Reidel, Dordrecht, S 107–124CrossRefGoogle Scholar
  42. Stewart MK, Friedman I (1975) Deuterium fractionation between aqueous salt solution and water vapor. J Geophys Res 80:3812–3818CrossRefGoogle Scholar
  43. Sverdrup HU (1936) Das maritime Verdunstungsproblem. Ann Hydrogr Marit Meteorol 32:41–47Google Scholar
  44. Thornthwaite CW, Holzman B (1942) Measurements of evaporation from land and water surfaces. US Dept Agric Tech Bull 817Google Scholar
  45. Thornthwaite CW, Mather JR (1955) The water balance. Inst Technol Publ Climat 8:1–86Google Scholar
  46. van der Westhuizen M (1969) Radioactive nuclear bomb fallout – a relationship between deposition, air concentration and rainfall. Atmos Environ 3:241Google Scholar
  47. Wang PK, Grover SN, Pruppacher HR (1978) On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops. J Atmos Sci 35:1735–1743CrossRefGoogle Scholar
  48. Yurtsever Y, Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfiantini R (Hrsg) Stable Isotope Hydrology. Tech Rep Ser 210, IAEA, Wien, S 103–142Google Scholar
  49. Zeldovich J (1942) Theory of the formation of a new phase. Zh Eksp Teor Fiz 12:525Google Scholar
  50. Zimin AG (1962) Mechanisms of capture and precipitation of atmospheric contaminants by clouds and precipitation. In: Karol IL, Malakhov SG (Hrsg) Problems in nuclear meteorology. Gosatomizdat, Moskau, S 139–182Google Scholar

Copyright information

© Springer-Verlag GmbH Deutschland 2017

Authors and Affiliations

  • Walter Roedel
    • 1
  • Thomas Wagner
    • 2
  1. 1.Universität Heidelberg, Inst. UmweltphysikHeidelbergDeutschland
  2. 2.Max-Planck-Institut für ChemieMainzDeutschland

Personalised recommendations