Hydrohalic acid interaction with copper surfaces: XRD of chloride, bromide, and iodide on Cu(100)

  • M. NowickiEmail author
  • K. Wandelt
Part of the Condensed Matter book series (volume 45B)


This chapter explains the interaction of hydrohalic acid with Cu(100) surfaces using X-ray diffraction studies.


  1. 1.
    Heinz, K., Starke, U.: Surface crystallography. In: Wandelt, K. (ed.) Surface and Interface Science, vol. 2, p. 489. Wiley-VCH, Weinheim (2012)Google Scholar
  2. 2.
    Ocko, B.M., Magnussen, O.M., Wang, J.X., Adzic, R.R., Wandlowski, T.: The structure and phase behavior of electrodeposited halides on single crystal surfaces. Physica B 221, 238 (1996)ADSCrossRefGoogle Scholar
  3. 3.
    Magnussen, O.M., Ocko, B.M., Adzic, R.R., Wang, J.X.: X-ray diffraction studies of ordered chloride and bromide monolayers at the Au(111)-solution interface. Phys. Rev. B 51, 5510 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    Wang, J., Ocko, B.M., Davenport, A.J., Isaacs, H.S.: In situ x-ray-diffraction and -reflectivity studies of the Au(111)/electrolyte interface: Reconstruction and anion adsorption. Phys. Rev. B 46, 10321 (1992)ADSCrossRefGoogle Scholar
  5. 5.
    Huemann, S., Hai, N.T.M., Broekmann, P., Wandelt, K., Zajonz, H., Dosch, H., Renner, F.: Surface redox chemistry of adsorbed viologens on Cu(100). J. Phys. Chem. B 110, 24955 (2006)CrossRefGoogle Scholar
  6. 6.
    Lind, D.M., Dunning, F.B., Walters, G.K., Davis, H.L.: Surface-structural analysis by use of spin-polarized low-energy electron diffraction: An investigation of the Cu(100) surface. Phys. Rev. B 35, 9037 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    Monier, C.J., Kern, R.: Natl. Bur. Stand. 359, 30 (1955)Google Scholar
  8. 8.
    Hull, S., Keen, D.A.: High-pressure polymorphism of the copper(I) halides: A neutron-diffraction study to ∼10 GPa. Phys. Rev. Condens. Matter. 50, 5868 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    Burns, P.C., Hawthorne, F.C.: Tolbachite, CuCl2, the first example of Cu2+ octahedrally coordinated by Cl−. Am. Mineral. 78, 187 (1993)Google Scholar
  10. 10.
    Jona, F., Westphal, D., Goldmann, A., Marcus, P.M.: A low-energy electron diffraction intensity analysis of Cu(00l)c(2×2)-Cl. J. Phys. C 16, 3001 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    Patel, J.R., Berremann, D.W., Sette, F., Citrin, P.H., Rowe, J.E., Cowan, P.L., Jach, T., Karlin, B.: Substrate surface relaxation for Cl and S on Cu(001). Phys. Rev. B 40, 1330 (1989)ADSCrossRefGoogle Scholar
  12. 12.
    Q-Wang, L., Schach von Wittenau, A.E., Ji, Z.G., Wang, L.S., Huang, Z.Q., Shirley, D.A.: c(2×2)Cl/Cu(001) adsorbate geometry and substrate-surface relaxation using low-temperature angle-resolved photoemission extended fine structure. Phys. Rev. B 44, 1292 (1991)ADSCrossRefGoogle Scholar
  13. 13.
    Cooper, M.A., Hawthorne, F.C.: A note on the crystal structure of marshite. Can. Mineral. 35, 785 (1997)Google Scholar
  14. 14.
    Petrillo, C., Moze, O., Ibberson, R.M.: High resolution neutron powder diffraction investigation of the low temperature crystal structure of molecular iodine (I2). Physik. 180, 639 (1992)ADSGoogle Scholar
  15. 15.
    Lucas, C.A., Markovic, N.M., Tidswell, I.M., Ross, P.N.: In situ X-ray scattering study of the Pt(1 1 1)-solution interface: Ordered anion structures and their influence on copper underpotential deposition. Physica B 221, 245 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    Saracino, M., Broekmann, P., Gentz, K., Becker, M., Keller, H., Janetzko, F., Bredow, T., Wandelt, K., Dosch, H.: Surface relaxation phenomena at electrified interfaces: Revealing adsorbate, potential, and solvent effects by combined x-ray diffraction, STM and DFT studies. Phys. Rev. B 79, 115448 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Kresse, G., Hafner, J.: Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)CrossRefGoogle Scholar
  19. 19.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Institute of Experimental PhysicsUniversity of WroclawWroclawPoland
  2. 2.Institute of Physical and Theoretical ChemistryUniversity of BonnBonnGermany

Personalised recommendations