Advertisement

Towards electronic devices based on epigraphene

  • C. BergerEmail author
  • E. H. Conrad
  • W. A. de Heer
Chapter
Part of the Condensed Matter book series (volume 45B)

Abstract

This chapter provides information on the electronic properties of epigraphene and their applications in digital electronic devices.

References

  1. 1.
    Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., De Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B. 108, 19912–19916 (2004)CrossRefGoogle Scholar
  2. 2.
    de Heer, W.A., Berger, C., First, P.N.: Patterned thin films graphite devices and methods for making the same. US patent 7,015,142, (provisional Application No.60/477,997 filed June 12 2003, Issued March 21 2006), (provisional Application No.60/477,997 filed June 12 2003, Issued March 21 2006)Google Scholar
  3. 3.
    Forbeaux, I., Themlin, J.M., Debever, J.M.: Heteroepitaxial graphite on 6H-SiC(0001): interface formation through conduction-band electronic structure. Phys. Rev. B. 58, 16396–16406 (1998)ADSCrossRefGoogle Scholar
  4. 4.
    Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B. 54, 17954–17961 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    Robinson, J.A., Hollander, M., LaBella, M., Trumbull, K.A., Cavalero, R., Snyder, D.W.: epitaxial graphene transistors: enhancing performance via hydrogen intercalation. Nano Lett. 11, 3875–3880 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    Emtsev, K.V., Speck, F., Seyller, T., Ley, L., Riley, J.D.: Interaction, growth, and ordering of epitaxial graphene on SiC{0001} surfaces: a comparative photoelectron spectroscopy study. Phys. Rev. B. 77, 155303 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Palacio, I., Celis, A., Nair, M.N., Gloter, A., Zobelli, A., Sicot, M., Malterre, D., Nevius, M.S., de Heer, W.A., Berger, C., Conrad, E.H., Taleb-Ibrahimi, A., Tejeda, A.: Atomic structure of epitaxial graphene sidewall nanoribbons: flat graphene, miniribbons, and the confinement gap. Nano Lett. (2014)Google Scholar
  8. 8.
    Sprinkle, M., Ruan, M., Hu, Y., Hankinson, J., Rubio-Roy, M., Zhang, B., Wu, X., Berger, C., de Heer, W.A.: Scalable templated growth of graphene nanoribbons on SiC. Nat. Nanotechnol. 5, 727–731 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    Baringhaus, J., Ruan, M., Edler, F., Tejeda, A., Sicot, M., Taleb-Ibrahimi, A., Li, A.P., Jiang, Z.G., Conrad, E.H., Berger, C., Tegenkamp, C., de Heer, W.A.: Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature. 506, 349–354 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    M. Suemitsu, S. Jiao, H. Fukidome, Y. Tateno, I. Makabe, T. Nakabayashi, Epitaxial graphene formation on 3C-SiC/Si thin films, J. Phys. D: Appl. Phys., 47 (2014).Google Scholar
  11. 11.
    Aristov, V.Y., Urbanik, G., Kummer, K., Vyalikh, D.V., Molodtsova, O.V., Preobrajenski, A.B., Zakharov, A.A., Hess, C., Hanke, T., Buchner, B., Vobornik, I., Fujii, J., Panaccione, G., Ossipyan, Y.A., Knupfer, M.: Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett. 10, 992–995 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Ouerghi, A., Ridene, M., Balan, A., Belkhou, R., Barbier, A., Gogneau, N., Portail, M., Michon, A., Latil, S., Jegou, P., Shukla, A.: Sharp interface in epitaxial graphene layers on 3C-SiC(100)/Si(100) wafers. Phys. Rev. B. 83, 205429 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    Han, M.Y., Brant, J.C., Kim, P.: Electron transport in disordered graphene nanoribbons. Phys. Rev. Lett. 104, 056801 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    Oostinga, J.B., Sacepe, B., Craciun, M.F., Morpurgo, A.F.: Magnetotransport through graphene nanoribbons. Phys. Rev. B. 81, 193408 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    Todd, K., Chou, H.T., Amasha, S., Goldhaber-Gordon, D.: Quantum dot behavior in graphene nanoconstrictions. Nano Lett. 9, 416–421 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    Molitor, F., Jacobsen, A., Stampfer, C., Guttinger, J., Ihn, T., Ensslin, K.: Transport gap in side-gated graphene constrictions. Phys. Rev. B. 79, 075426 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    Wakabayashi, K., Fujita, M., Ajiki, H., Sigrist, M.: Electronic and magnetic properties of nanographite ribbons. Phys. Rev. B. 59, 8271–8282 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Nevius, M.S., Wang, F., Shepperd, K., Palmer, J., Bertran, F., Le Fevre, P., Kunc, J., de Heer, W.A., Berger, C., Conrad, E.H.: A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat. Phys. 9, 49–54 (2013)CrossRefGoogle Scholar
  19. 19.
    Kedzierski, J., Hsu, P.L., Healey, P., Wyatt, P.W., Keast, C.L., Sprinkle, M., Berger, C., de Heer, W.A.: Epitaxial graphene transistors on SIC substrates. IEEE Trans. Electr. Dev. 55, 2078–2085 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Sangwan, V.K., Jariwala, D., Filippone, S.A., Karmel, H.J., Johns, J.E., Alaboson, J.M.P., Marks, T.J., Lauhon, L.J., Hersam, M.C.: Quantitatively enhanced reliability and uniformity of high-kappa dielectrics on graphene enabled by self-assembled seeding layers. Nano Lett. 13, 1162–1167 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    Tzalenchuk, A., Lara-Avila, S., Cedergren, K., Syvajarvi, M., Yakimova, R., Kazakova, O., Janssen, T.J.B.M., Moth-Poulsen, K., Bjornholm, T., Kopylov, S., Fal’ko, V., Kubatkin, S.: Engineering and metrology of epitaxial graphene. Solid State Commun. 151, 1094–1099 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    Krach, F., Hertel, S., Waldmann, D., Jobst, J., Krieger, M., Reshanov, S., Schoner, A., Weber, H.B.: A switch for epitaxial graphene electronics: utilizing the silicon carbide substrate as transistor channel. Appl. Phys. Lett. 100, 122102 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Guo, Z.L., Dong, R., Chakraborty, P.S., Lourenco, N., Palmer, J., Hu, Y.K., Ruan, M., Hankinson, J., Kunc, J., Cressler, J.D., Berger, C., de Heer, W.A.: Record maximum oscillation frequency in C-face epitaxial graphene transistors. Nano Lett. 13, 942–947 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    Schwierz, F.: Graphene transistors: status, prospects, and problems. Proc IEEE. 101, 1567–1584 (2013)CrossRefGoogle Scholar
  25. 25.
    Meric, I., Han, M.Y., Young, A.F., Ozyilmaz, B., Kim, P., Shepard, K.L.: Current saturation in zero-bandgap, topgated graphene field-effect transistors. Nat. Nanotechnol. 3, 654–659 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    Schwierz, F.: Electronics industry-compatible graphene transistors. Nature. 472, 41–42 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Wu, Y.Q., Farmer, D.B., Valdes-Garcia, A., Zhu, W.J., Jenkins, K.A., Dimitrakopoulos, C., Avouris, P., Lin, Y.M.: Record High RF Performance for Epitaxial Graphene Transistors. 2011 I.E. International Electron Devices Meeting (IEDM) (2011)Google Scholar
  28. 28.
    Cheng, R., Bai, J.W., Liao, L., Zhou, H.L., Chen, Y., Liu, L.X., Lin, Y.C., Jiang, S., Huang, Y., Duan, X.F.: High-frequency self-aligned graphene transistors with transferred gate stacks. Proc. Natl. Acad. Sci. U. S. A. 109, 11588–11592 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    Krithivasan, R., Lu, Y., Cressler, J.D., Rieh, J.S., Khater, M.H., Ahlgren, D., Freeman, G.: Half-terahertz operation of SiGeHBTs. IEEE Electron Device Lett. 27, 567–569 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    Lin, Y.-M., Farmer, D.B., Jenkins, K.A., Wu, Y., Tedesco, J.L., Myers-Ward, R.L.E., Jr, C.R., Gaskill, D.K., Dimitrakopoulos, C., Avouris, P.: Enhanced performance in epitaxial graphene FETs with optimized channel morphology. IEEE Electron Device Lett. 32, 1343 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    Dlubak, B., Seneor, P., Anane, A., Barraud, C., Deranlot, C., Deneuve, D., Servet, B., Mattana, R., Petroff, F., Fert, A.: Are Al2O3 and MgO tunnel barriers suitable for spin injection in graphene? Appl. Phys. Lett. 97, 092502 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    Robinson, J.A., LaBella, M., Trumbull, K.A., Weng, X.J., Cavelero, R., Daniels, T., Hughes, Z., Hollander, M., Fanton, M., Snyder, D.: Epitaxial graphene materials integration: effects of dielectric overlayers on structural and electronic properties. ACS Nano. 4, 2667–2672 (2010)CrossRefGoogle Scholar
  33. 33.
    Wang, Q.H., Hersam, M.C.: Room-temperature molecular-resolution characterization of self-assembled organic monolayers on epitaxial graphene. Nat. Chem. 1, 206–211 (2009)CrossRefGoogle Scholar
  34. 34.
    Sangwan, V.K., Jariwala, D., Everaerts, K., McMorrow, J.J., He, J.T., Grayson, M., Lauhon, L.J., Marks, T.J., Hersam, M.C.: Wafer-scale solution-derived molecular gate dielectrics for low-voltage graphene electronics. Appl. Phys. Lett. 104, 083503 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    Moon, J.S., Seo, H.C., Antcliffe, M., Le, D., McGuire, C., Schmitz, A., Nyakiti, L.O., Gaskill, D.K., Campbell, P.M., Lee, K.M., Asbeck, P.: graphene fets for zero-bias linear resistive FET mixers. IEEE Electron Device Lett. 34, 465–467 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    Moon, J.S., Curtis, D., Zehnder, D., Kim, S., Gaskill, D.K., Jernigan, G.G., Myers-Ward, R.L., Eddy, C.R., Campbell, P.M., Lee, K.M., Asbeck, P.: Low-phase-noise graphene FETs in ambipolar RF applications. IEEE Electron Device Lett. 32, 270–272 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    Moon, J.S., Seo, H.C., Antcliffe, M., Lin, S., McGuire, C., Le, D., Nyakiti, L.O., Gaskill, D.K., Campbell, P.M., Lee, K.M., Asbeck, P.: Graphene FET-based zero-bias RF to millimeter-wave detection. IEEE Electron Device Lett. 33, 1357–1359 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    Dlubak, B., Martin, M.B., Deranlot, C., Servet, B., Xavier, S., Mattana, R., Sprinkle, M., Berger, C., De Heer, W.A., Petroff, F., Anane, A., Seneor, P., Fert, A.: Highly efficient spin transport in epitaxial graphene on SiC. Nat. Phys. 8, 557–561 (2012)CrossRefGoogle Scholar
  39. 39.
    Seneor, P., Dlubak, B., Martin, M.B., Anane, A., Jaffres, H., Fert, A.: Spintronics with graphene. MRS Bull. 37, 1245–1254 (2012)CrossRefGoogle Scholar
  40. 40.
    Mani, R.G., Hankinson, J., Berger, C., de Heer, W.A.: Observation of resistively detected hole spin resonance and zero-field pseudo-spin splitting in epitaxial graphene. Nat. Commun. 3, 996 (2012)CrossRefGoogle Scholar
  41. 41.
    Maassen, T., van den Berg, J.J., IJbema, N., Fromm, F., Seyller, T., Yakimova, R., van Wees, B.J.: Long spin relaxation times in wafer scale epitaxial graphene on SiC(0001). Nano Lett. 12, 1498–1502 (2012)ADSCrossRefGoogle Scholar
  42. 42.
    Maassen, T., van den Berg, J.J., Huisman, E.H., Dijkstra, H., Fromm, F., Seyller, T., van Wees, B.J.: Localized states influence spin transport in epitaxial graphene. Phys. Rev. Lett. 110, 067209 (2013)ADSCrossRefGoogle Scholar
  43. 43.
    Lin, Y.M., Valdes-Garcia, A., Han, S.J., Farmer, D.B., Meric, I., Sun, Y.N., Wu, Y.Q., Dimitrakopoulos, C., Grill, A., Avouris, P., Jenkins, K.A.: Wafer-scale graphene integrated circuit. Science. 332, 1294–1297 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    Hertel, S., Waldmann, D., Jobst, J., Albert, A., Albrecht, M., Reshanov, S., Schoner, A., Krieger, M., Weber, H.B.: Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics. Nat. Commun. 3, 957 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    Kunc, J., Hu, Y., Palmer, J., Guo, Z., Hankinson, J., Gamal, S.H., Berger, C., de Heer, W.A.: Planar edge schottky barrier-tunneling transistors using epitaxial graphene/SiC junctions. Nano Lett. 14, 5170–5175 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    Kang, H.C., Karasawa, H., Miyamoto, Y., Handa, H., Fukidome, H., Suemitsu, T., Suemitsu, M., Otsuji, T.: Epitaxial graphene top-gate FETs on silicon substrates. Solid State Electron. 54, 1071–1075 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Kang, H.C., Karasawa, H., Miyamoto, Y., Handa, H., Suemitsu, T., Suemitsu, M., Otsuji, T.: Epitaxial graphene field-effect transistors on silicon substrates. Solid State Electron. 54, 1010–1014 (2010)ADSCrossRefGoogle Scholar
  48. 48.
    El Moutaouakil, A., Kang, H.C., Handa, H., Fukidome, H., Suemitsu, T., Sano, E., Suemitsu, M., Otsuji, T.: Room temperature logic inverter on epitaxial graphene-on-silicon device. Jpn. J. Appl. Phys. 50, 070113 (2011)CrossRefGoogle Scholar
  49. 49.
    Dong, R., Guo, Z.L., Palmer, J., Hu, Y.K., Ruan, M., Hankinson, J., Kunc, J., Bhattacharya, S.K., Berger, C., de Heer, W.A.: Wafer bonding solution to epitaxial graphene-silicon integration. J. Phys. D: Appl. Phys. 47, 094001 (2014.) (094008 pp)ADSCrossRefGoogle Scholar
  50. 50.
    Wang, F., Liu, G., Rothwell, S., Nevius, M., Tejeda, A., Taleb-Ibrahimi, A., Feldman, L.C., Cohen, P.I., Conrad, E.H.: Wide-gap semiconducting graphene from nitrogen-seeded SiC. Nano Lett. 13, 4827–4832 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    Nevius, M.S., Conrad, M., Wang, F., Celis, A., Nair, M.N., Taleb-Ibrahimi, A., Tejeda, A., Conrad, E.H.: Semiconducting graphene from highly ordered substrate interactions. Phys. Rev. Lett. 115, 136802 (2015)ADSCrossRefGoogle Scholar
  52. 52.
    Wu, X.S., Sprinkle, M., Li, X.B., Ming, F., Berger, C., de Heer, W.A.: Epitaxial-graphene/graphene-oxide junction: an essential step towards epitaxial graphene electronics. Phys. Rev. Lett. 101, 026801 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    Moon, J.S., Seo, H.C., Stratan, F., Antcliffe, M., Schmitz, A., Ross, R.S., Kiselev, A.A., Wheeler, V.D., Nyakiti, L.O., Gaskill, D.K., Lee, K.M., Asbeck, P.M.: Lateral graphene heterostructure field-effect transistor. IEEE Electron Device Lett. 34, 1190–1192 (2013)ADSCrossRefGoogle Scholar
  54. 54.
    Bekyarova, E., Itkis, M.E., Ramesh, P., Berger, C., Sprinkle, M., de Heer, W.A., Haddon, R.C.: Chemical modification of epitaxial graphene: spontaneous grafting of aryl groups. J. Am. Chem. Soc. 131, 1336–1337 (2009)CrossRefGoogle Scholar
  55. 55.
    Niyogi, S., Bekyarova, E., Itkis, M.E., Zhang, H., Shepperd, K., Hicks, J., Sprinkle, M., Berger, C., Lau, C.N., Deheer, W.A., Conrad, E.H., Haddon, R.C.: Spectroscopy of covalently functionalized graphene. Nano Lett. 10, 4061–4066 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    Hong, J.M., Niyogi, S., Bekyarova, E., Itkis, M.E., Ramesh, P., Amos, N., Litvinov, D., Berger, C., de Heer, W.A., Khizroev, S., Haddon, R.C.: Effect of nitrophenyl functionalization on the magnetic properties of epitaxial graphene. Small. 7, 1175–1180 (2011)CrossRefGoogle Scholar
  57. 57.
    Hossain, M.Z., Razak, M.B.A., Yoshimoto, S., Mukai, K., Koitaya, T., Yoshinobu, J., Sone, H., Hosaka, S., Hersam, M.C.: Aqueous-phase oxidation of epitaxial graphene on the silicon face of SiC(0001). J. Phys. Chem. C. 118, 1014–1020 (2014)CrossRefGoogle Scholar
  58. 58.
    Alaboson, J.M.P., Wang, Q.H., Kellar, J.A., Park, J., Elam, J.W., Pellin, M.J., Hersam, M.C.: Conductive atomic force microscope nanopatterning of epitaxial graphene on SiC(0001) in ambient conditions. Adv. Mater. 23, 2181 (2011)CrossRefGoogle Scholar
  59. 59.
    Zhou, S., Kim, S., Di Gennaro, E., Hu, Y., Gong, C., Lu, X., Berger, C., de Heer, W., Riedo, E., Chabal, Y.J., Aruta, C., Bongiorno, A.: Film structure of epitaxial graphene oxide on SiC: insight on the relationship between interlayer spacing, water content, and intralayer structure. Adv. Mater. Interfaces. 1, 1300106 (2014)CrossRefGoogle Scholar
  60. 60.
    Wei, Z.Q., Wang, D.B., Kim, S., Kim, S.Y., Hu, Y.K., Yakes, M.K., Laracuente, A.R., Dai, Z.T., Marder, S.R., Berger, C., King, W.P., de Heer, W.A., Sheehan, P.E., Riedo, E.: Nanoscale tunable reduction of graphene oxide for graphene electronics. Science. 328, 1373–1376 (2010)ADSCrossRefGoogle Scholar
  61. 61.
    Brey, L., Fertig, H.A.: Electronic states of graphene nanoribbons studied with the Dirac equation. Phys. Rev. B. 73, 235411 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    Son, Y.W., Cohen, M.L., Louie, S.G.: Energy gaps in graphene nanoribbons. Phys. Rev. Lett. 97, 216803 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institut NéelCNRS - University Grenoble - AlpesGrenobleFrance
  3. 3.TICNNTianjin UniversityTianjinChina

Personalised recommendations