Advertisement

Electronic transport properties of epigraphene

  • C. BergerEmail author
  • E. H. Conrad
  • W. A. de Heer
Chapter
Part of the Condensed Matter book series (volume 45B)

Abstract

In this chapter electronic transport properties such as resistance, mobility, charge density and conductivity of graphene are studied.

References

  1. 1.
    Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., De Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B. 108, 19912–19916 (2004)CrossRefGoogle Scholar
  2. 2.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., Firsov, A.A.: Electric field effect in atomically thin carbon films. Science. 306, 666 (2004)CrossRefADSGoogle Scholar
  3. 3.
    Zhang, Y.B., Small, J.P., Amori, M.E.S., Kim, P.: Electric field modulation of galvanomagnetic properties of mesoscopic graphite. Phys. Rev. Lett. 94, 176803 (2005)CrossRefADSGoogle Scholar
  4. 4.
    Berger, C., Song, Z.M., Li, X.B., Wu, X.S., Brown, N., Naud, C., Mayou, D., Li, T.B., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science. 312, 1191–1196 (2006)CrossRefADSGoogle Scholar
  5. 5.
    Orlita, M., Faugeras, C., Plochocka, P., Neugebauer, P., Martinez, G., Maude, D.K., Barra, A.L., Sprinkle, M., Berger, C., de Heer, W.A., Potemski, M.: Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008)CrossRefADSGoogle Scholar
  6. 6.
    Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)CrossRefADSGoogle Scholar
  7. 7.
    Yager, T., Lartsev, A., Yakimova, R., Lara-Avila, S., Kubatkin, S.: Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC. Carbon. 87, 409–414 (2015)CrossRefGoogle Scholar
  8. 8.
    Rollings, E., Gweon, G.H., Zhou, S.Y., Mun, B.S., McChesney, J.L., Hussain, B.S., Fedorov, A., First, P.N., de Heer, W.A., Lanzara, A.: Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids. 67, 2172–2177 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Ohta, T., Bostwick, A., Seyller, T., Horn, K., Rotenberg, E.: Controlling the electronic structure of bilayer graphene. Science. 313, 951–954 (2006)CrossRefADSGoogle Scholar
  10. 10.
    Bostwick, A., Ohta, T., Seyller, T., Horn, K., Rotenberg, E.: Quasiparticle dynamics in graphene. Nat. Phys. 3, 36–40 (2007)CrossRefGoogle Scholar
  11. 11.
    Riedl, C., Coletti, C., Iwasaki, T., Zakharov, A.A., Starke, U.: Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 103, 246804 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Forti, S., Starke, U.: Epitaxial graphene on SiC: from carrier density engineering to quasi-free standing graphene by atomic intercalation. J. Phys. D: Appl. Phys. 47, 094013 (2014)CrossRefADSGoogle Scholar
  13. 13.
    Wu, X.S., Hu, Y.K., Ruan, M., Madiomanana, N.K., Hankinson, J., Sprinkle, M., Berger, C., de Heer, W.A.: Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Appl. Phys. Lett. 95, 223108 (2009)CrossRefADSGoogle Scholar
  14. 14.
    Hicks, J., Shepperd, K., Wang, F., Conrad, E.H.: The structure of graphene grown on the SiC (000(1)over-bar) surface. J. Phys. D: Appl. Phys. 45, 154002 (2012)CrossRefADSGoogle Scholar
  15. 15.
    Baringhaus, J., Ruan, M., Edler, F., Tejeda, A., Sicot, M., Taleb-Ibrahimi, A., Li, A.P., Jiang, Z.G., Conrad, E.H., Berger, C., Tegenkamp, C., de Heer, W.A.: Exceptional ballistic transport in epitaxial graphene nanoribbons. Nature. 506, 349–354 (2014)CrossRefADSGoogle Scholar
  16. 16.
    Hu, Y., Ruan, M., Guo, Z.L., Dong, R., Palmer, J., Hankinson, J., Berger, C., de Heer, W.A.: Structured epitaxial graphene: growth and properties. J. Phys. D: Appl. Phys. 45, 154010 (2012)CrossRefADSGoogle Scholar
  17. 17.
    Ristein, J., Mammadov, S., Seyller, T.: Origin of doping in quasi-free-standing graphene on silicon carbide. Phys. Rev. Lett. 108, 246104 (2012)CrossRefADSGoogle Scholar
  18. 18.
    Mammadov, S., Ristein, J., Koch, R.J., Ostler, M., Raidel, C., Wanke, M., Vasiliauskas, R., Yakimova, R., Seyller, T.: Polarization doping of graphene on silicon carbide. 2D Mater. 1, 035003 (2014)CrossRefGoogle Scholar
  19. 19.
    Baringhaus, J., Aprojanz, J., Wiegand, J., Laube, D., Halbauer, M., Hubner, J., Oestreich, M., Tegenkamp, C.: Growth and characterization of sidewall graphene nanoribbons. Appl. Phys. Lett. 106, 043109 (2015)CrossRefADSGoogle Scholar
  20. 20.
    Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Nevius, M.S., Wang, F., Shepperd, K., Palmer, J., Bertran, F., Le Fevre, P., Kunc, J., de Heer, W.A., Berger, C., Conrad, E.H.: A wide-bandgap metal-semiconductor-metal nanostructure made entirely from graphene. Nat. Phys. 9, 49–54 (2013)CrossRefGoogle Scholar
  21. 21.
    Frank, S., Poncharal, P., Wang, Z.L., de Heer, W.A.: Carbon nanotube quantum resistors. Science. 280, 1744–1746 (1998)CrossRefADSGoogle Scholar
  22. 22.
    Orlita, M., Faugeras, C., Grill, R., Wysmolek, A., Strupinski, W., Berger, C., de Heer, W.A., Martinez, G., Potemski, M.: Carrier scattering from dynamical magnetoconductivity in quasineutral epitaxial graphene. Phys. Rev. Lett. 107, 216603 (2011)CrossRefADSGoogle Scholar
  23. 23.
    Sun, D., Divin, C., Berger, C., de Heer, W.A., First, P.N., Norris, T.B.: Spectroscopic measurement of interlayer screening in multilayer epitaxial graphene. Phys. Rev. Lett. 104, 136802 (2010)CrossRefADSGoogle Scholar
  24. 24.
    Liu, Y., Willis, R.F.: Plasmon-phonon strongly coupled mode in epitaxial graphene. Phys. Rev. B. 81, 081406(R) (2010)CrossRefADSGoogle Scholar
  25. 25.
    Min, H.K., Adam, S., Song, Y.J., Stroscio, J.A., Stiles, M.D., MacDonald, A.H.: Landau levels and band bending in few-layer epitaxial graphene. Phys. Rev. B. 83, 155430 (2011)CrossRefADSGoogle Scholar
  26. 26.
    Curtin, A.E., Fuhrer, M.S., Tedesco, J.L., Myers-Ward, R.L., Eddy, C.R., Gaskill, D.K.: Kelvin probe microscopy and electronic transport in graphene on SiC(0001) in the minimum conductivity regime. Appl. Phys. Lett. 98, 243111 (2011)CrossRefADSGoogle Scholar
  27. 27.
    Shon, N.H., Ando, T.: Quantum transport in two-dimensional graphite system. J. Phys. Soc. Jpn. 67, 2421–2429 (1998)CrossRefADSGoogle Scholar
  28. 28.
    Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–466 (2011)CrossRefADSGoogle Scholar
  29. 29.
    Chen, J.H., Jang, C., Adam, S., Fuhrer, M.S., Williams, E.D., Ishigami, M.: Charged-impurity scattering in graphene. Nat. Phys. 4, 377–381 (2008)CrossRefGoogle Scholar
  30. 30.
    Kim, S., Nah, J., Jo, I., Shahrjerdi, D., Colombo, L., Yao, Z., Tutuc, E., Banerjee, S.K.: Realization of a high mobility dual-gated graphene field-effect transistor with Al2O3 dielectric. Appl. Phys. Lett. 94, 062107 (2009)CrossRefADSGoogle Scholar
  31. 31.
    Wehrfritz, P., Fromm, F., Malzer, S., Seyller, T.: Quasi-freestanding epitaxial graphene transistor with silicon nitride top gate. J. Phys. D: Appl. Phys. 47, 305103 (2014)CrossRefGoogle Scholar
  32. 32.
    Kedzierski, J., Hsu, P.L., Healey, P., Wyatt, P.W., Keast, C.L., Sprinkle, M., Berger, C., de Heer, W.A.: Epitaxial graphene transistors on SIC substrates. IEEE Trans. Electr. Dev. 55, 2078–2085 (2008)CrossRefADSGoogle Scholar
  33. 33.
    Sangwan, V.K., Jariwala, D., Filippone, S.A., Karmel, H.J., Johns, J.E., Alaboson, J.M.P., Marks, T.J., Lauhon, L.J., Hersam, M.C.: Quantitatively enhanced reliability and uniformity of high-kappa dielectrics on graphene enabled by self-assembled seeding layers. Nano Lett. 13, 1162–1167 (2013)CrossRefADSGoogle Scholar
  34. 34.
    Tzalenchuk, A., Lara-Avila, S., Cedergren, K., Syvajarvi, M., Yakimova, R., Kazakova, O., Janssen, T.J.B.M., Moth-Poulsen, K., Bjornholm, T., Kopylov, S., Fal’ko, V., Kubatkin, S.: Engineering and metrology of epitaxial graphene. Solid State Commun. 151, 1094–1099 (2011)CrossRefADSGoogle Scholar
  35. 35.
    Krach, F., Hertel, S., Waldmann, D., Jobst, J., Krieger, M., Reshanov, S., Schoner, A., Weber, H.B.: A switch for epitaxial graphene electronics: utilizing the silicon carbide substrate as transistor channel. Appl. Phys. Lett. 100, 122102 (2012)CrossRefADSGoogle Scholar
  36. 36.
    Waldmann, D., Jobst, J., Speck, F., Seyller, T., Krieger, M., Weber, H.B.: Bottom-gated epitaxial graphene. Nat. Mater. 10, 357–360 (2011)CrossRefADSGoogle Scholar
  37. 37.
    Jabakhanji, B., Consejo, C., Camara, N., Desrat, W., Godignon, P., Jouault, B.: Quantum Hall effect of self-organized graphene monolayers on the C-face of 6H-SiC. J. Phys. D: Appl. Phys. 47, 094009 (2014)CrossRefADSGoogle Scholar
  38. 38.
    Jobst, J., Waldmann, D., Speck, F., Hirner, R., Maude, D.K., Seyller, T., Weber, H.B.: Quantum oscillations and quantum Hall effect in epitaxial graphene. Phys. Rev. B. 81, 195434 (2010)CrossRefADSGoogle Scholar
  39. 39.
    Satrapinski, A., Novikov, S., Lebedeva, N.: Precision quantum Hall resistance measurement on epitaxial graphene device in low magnetic field. Appl. Phys. Lett. 103, 173509 (2013)CrossRefADSGoogle Scholar
  40. 40.
    Bointon, T.H., Khrapach, I., Yakimova, R., Shytov, A.V., Craciun, M.F., Russo, S.: Approaching magnetic ordering in graphene materials by FeCl3 intercalation. Nano Lett. 14, 1751–1755 (2014)CrossRefADSGoogle Scholar
  41. 41.
    Guo, Z.L., Dong, R., Chakraborty, P.S., Lourenco, N., Palmer, J., Hu, Y.K., Ruan, M., Hankinson, J., Kunc, J., Cressler, J.D., Berger, C., de Heer, W.A.: Record maximum oscillation frequency in C-face epitaxial graphene transistors. Nano Lett. 13, 942–947 (2013)CrossRefADSGoogle Scholar
  42. 42.
    Jouault, B., Jabakhanji, B., Camara, N., Desrat, W., Tiberj, A., Huntzinger, J.R., Consejo, C., Caboni, A., Godignon, P., Kopelevich, Y., Camassel, J.: Probing the electrical anisotropy of multilayer graphene on the Si face of 6H-SiC. Phys. Rev. B. 82, 085438 (2010)CrossRefADSGoogle Scholar
  43. 43.
    Giannazzo, F., Deretzis, I., Nicotra, G., Fisichella, G., Spinella, C., Roccaforte, F., La Magna, A.: Electronic properties of epitaxial graphene residing on SiC facets probed by conductive atomic force microscopy. Appl. Surf. Sci. 291, 53–57 (2014)CrossRefADSGoogle Scholar
  44. 44.
    Schumann, T., Friedland, K.J., Oliveira, M.H., Tahraoui, A., Lopes, J.M.J., Riechert, H.: Anisotropic quantum Hall effect in epitaxial graphene on stepped SiC surfaces. Phys. Rev. B. 85, 235402 (2012)CrossRefADSGoogle Scholar
  45. 45.
    Yakes, M.K., Gunlycke, D., Tedesco, J.L., Campbell, P.M., Myers-Ward, R.L., Eddy, C.R., Gaskill, D.K., Sheehan, P.E., Laracuente, A.R.: Conductance anisotropy in epitaxial graphene sheets generated by substrate interactions. Nano Lett. 10, 1559–1562 (2010)CrossRefADSGoogle Scholar
  46. 46.
    Ji, S.H., Hannon, J.B., Tromp, R.M., Perebeinos, V., Tersoff, J., Ross, F.M.: Atomic-scale transport in epitaxial graphene. Nat. Mater. 11, 114–119 (2012)CrossRefADSGoogle Scholar
  47. 47.
    Nagase, M., Hibino, H., Kageshima, H., Yamaguchi, H.: Local conductance measurements of double-layer graphene on SiC substrate. Nanotechnology. 20, 445704 (2009)CrossRefADSGoogle Scholar
  48. 48.
    Hertel, S., Kisslinger, F., Jobst, J., Waldmann, D., Krieger, M., Weber, H.B.: Current annealing and electrical breakdown of epitaxial graphene. Appl. Phys. Lett. 98, 212109 (2011)CrossRefADSGoogle Scholar
  49. 49.
    Moser, J., Barreiro, A., Bachtold, A.: Current-induced cleaning of graphene. Appl. Phys. Lett. 91, 163513 (2007)CrossRefADSGoogle Scholar
  50. 50.
    Li, X.B., Wu, X.S., Sprinkle, M., Ming, F., Ruan, M., Hu, Y.K., Berger, C., de Heer, W.A.: Top- and side-gated epitaxial graphene field effect transistors. Phys Status Solid A. 207, 286–290 (2010)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institut NéelCNRS - University Grenoble - AlpesGrenobleFrance
  3. 3.TICNNTianjin UniversityTianjinChina

Personalised recommendations