Advertisement

The electronic band structure of graphene

  • C. BergerEmail author
  • E. H. Conrad
  • W. A. de Heer
Part of the Condensed Matter book series (volume 45B)

Abstract

In this chapter electronic band structure of graphene is discussed using tight binding model and the influence of substrates on graphene is also explained.

References

  1. 1.
    Berger, C., Song, Z.M., Li, T.B., Li, X.B., Ogbazghi, A.Y., Feng, R., Dai, Z.T., Marchenkov, A.N., Conrad, E.H., First, P.N., De Heer, W.A.: Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B. 108, 19912–19916 (2004)CrossRefGoogle Scholar
  2. 2.
    Sprinkle, M., Siegel, D., Hu, Y., Hicks, J., Tejeda, A., Taleb-Ibrahimi, A., Le Fevre, P., Bertran, F., Vizzini, S., Enriquez, H., Chiang, S., Soukiassian, P., Berger, C., de Heer, W.A., Lanzara, A., Conrad, E.H.: First direct observation of a nearly ideal graphene band structure. Phys. Rev. Lett. 103, 226803 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    de Heer, W.A.: The invention of graphene electronics and the physics of epitaxial graphene on silicon carbide. Phys. Scr. T146, 014004 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    Gall, N.R., RutKov, E.V., Tontegode, A.Y.: Two dimensional graphite films on metals and their intercalation. Int. J. Mod. Phys. B. 11, 1865–1911 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622–634 (1947)ADSCrossRefGoogle Scholar
  6. 6.
    Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272–279 (1958)ADSCrossRefGoogle Scholar
  7. 7.
    Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Gruneis, A., Attaccalite, C., Wirtz, L., Shiozawa, H., Saito, R., Pichler, T., Rubio, A.: Tight-binding description of the quasiparticle dispersion of graphite and few-layer graphene. Phys. Rev. B. 78, 205425 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    McClure, J.W.: Band structure of graphite and de Haas-van Alphen effect. Phys. Rev. 108, 612–618 (1957)ADSCrossRefGoogle Scholar
  10. 10.
    Son, Y.W., Cohen, M.L., Louie, S.G.: Half-metallic graphene nanoribbons. Nature. 444, 347–349 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Divincenzo, D.P., Mele, E.J.: Self-consistent effective-mass theory for intralayer screening in graphite-intercalation compounds. Phys. Rev. B. 29, 1685–1694 (1984)ADSCrossRefGoogle Scholar
  12. 12.
    Ando, T., Nakanishi, T., Saito, R.: Berry’s phase and absence of back scattering in carbon nanotubes. J. Phys. Soc. Jpn. 67, 2857–2862 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Khveshchenko, D.V.: Ghost excitonic insulator transition in layered graphite. Phys. Rev. Lett. 87, 2468021–2468024 (2001)Google Scholar
  14. 14.
    Hwang, C., Siegel, D.A., Mo, S.K., Regan, W., Ismach, A., Zhang, Y.G., Zettl, A., Lanzara, A.: Fermi velocity engineering in graphene by substrate modification. Sci Rep-UK. 2, 590 (2012.) (594 pp)CrossRefGoogle Scholar
  15. 15.
    Ponomarenko, L.A., Gorbachev, R.V., Yu, G.L., Elias, D.C., Jalil, R., Patel, A.A., Mishchenko, A., Mayorov, A.S., Woods, C.R., Wallbank, J.R., Mucha-Kruczynski, M., Piot, B.A., Potemski, M., Grigorieva, I.V., Novoselov, K.S., Guinea, F., Fal’ko, V.I., Geim, A.K.: Cloning of Dirac fermions in graphene superlattices. Nature. 497, 594–597 (2013)ADSCrossRefGoogle Scholar
  16. 16.
    Berger, C., Song, Z.M., Li, X.B., Wu, X.S., Brown, N., Naud, C., Mayou, D., Li, T.B., Hass, J., Marchenkov, A.N., Conrad, E.H., First, P.N., de Heer, W.A.: Electronic confinement and coherence in patterned epitaxial graphene. Science. 312, 1191–1196 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    Wu, X.S., Li, X.B., Song, Z.M., Berger, C., de Heer, W.A.: Weak antilocalization in epitaxial graphene: evidence for chiral electrons. Phys. Rev. Lett. 98, 266405 (2007)CrossRefGoogle Scholar
  18. 18.
    Sadowski, M.L., Martinez, G., Potemski, M., Berger, C., de Heer, W.A.: Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97, 266405 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    Orlita, M., Faugeras, C., Plochocka, P., Neugebauer, P., Martinez, G., Maude, D.K., Barra, A.L., Sprinkle, M., Berger, C., de Heer, W.A., Potemski, M.: Approaching the Dirac point in high-mobility multilayer epitaxial graphene. Phys. Rev. Lett. 101, 267601 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    Faugeras, C., Nerriere, A., Potemski, M., Mahmood, A., Dujardin, E., Berger, C., de Heer, W.A.: Few-layer graphene on SiC, pyrolitic graphite, and graphene: a Raman scattering study. Appl. Phys. Lett. 92, 011914 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    Song, Y.J., Otte, A.F., Kuk, Y., Hu, Y.K., Torrance, D.B., First, P.N., de Heer, W.A., Min, H.K., Adam, S., Stiles, M.D., MacDonald, A.H., Stroscio, J.A.: High-resolution tunnelling spectroscopy of a graphene quartet. Nature. 467, 185–189 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Martin, J., Akerman, N., Ulbricht, G., Lohmann, T., Smet, J.H., Von Klitzing, K., Yacoby, A.: Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008)CrossRefGoogle Scholar
  23. 23.
    Chen, J.H., Jang, C., Xiao, S.D., Ishigami, M., Fuhrer, M.S.: Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 3, 206–209 (2008)CrossRefGoogle Scholar
  24. 24.
    Tan, Y.W., Zhang, Y., Bolotin, K., Zhao, Y., Adam, S., Hwang, E.H., Das Sarma, S., Stormer, H.L., Kim, P.: Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 99, 246803 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Ponomarenko, L.A., Jiang, D., Geim, A.K.: Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    Das Sarma, S., Adam, S., Hwang, E.H., Rossi, E.: Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83, 407–470 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Fujita, M., Wakabayashi, K., Nakada, K., Kusakabe, K.: Peculiar localized state at zigzag graphite edge. J. Phys. Soc. Jpn. 65, 1920–1923 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Nakada, K., Fujita, M., Dresselhaus, G., Dresselhaus, M.S.: Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys. Rev. B. 54, 17954–17961 (1996)ADSCrossRefGoogle Scholar
  30. 30.
    Emtsev, K.V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G.L., Ley, L., McChesney, J.L., Ohta, T., Reshanov, S.A., Rohrl, J., Rotenberg, E., Schmid, A.K., Waldmann, D., Weber, H.B., Seyller, T.: Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nat. Mater. 8, 203–207 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    Mahmood, A., Mallet, P., Veuillen, J.Y.: Quasiparticle scattering off phase boundaries in epitaxial graphene. Nanotechnology. 23, 055706 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    Veuillen, J.Y., Hiebel, F., Magaud, L., Mallet, P., Varchon, F.: Interface structure of graphene on SiC: an ab initio and STM approach. J. Phys. D: Appl. Phys. 43, 374008 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.School of PhysicsGeorgia Institute of TechnologyAtlantaUSA
  2. 2.Institut NéelCNRS - University Grenoble - AlpesGrenobleFrance
  3. 3.TICNNTianjin UniversityTianjinChina

Personalised recommendations