• Christoph J. WeberEmail author
  • Michael Roth


Battery separators are flat materials situated between the positive and negative electrodes of a battery cell. Their function is to prevent physical contact and, therefore, short circuits. At the same time, they must enable ions to be transported as freely as possible within the electrolyte between the electrodes. This is essential for charge equalization and the electrochemical cell to work. To achieve this, separators are usually porous flat designs filled with an electrolyte. The following chapters first set out the basic characteristics of separators and the current status of conventional separator technology. Then, new separator concepts will be outlined and a currently available separator technology and its characteristics will be presented.


  1. 1.
    Anderman M (2011) Status of Li-ion battery technology for automotive applications. SAE international vehicle battery summit. Advanced Automotive Batteries, ShanghaiGoogle Scholar
  2. 2.
    Baldwin RS (2009) A review of state-of‐the‐art separator materials for advanced lithium‐based batteries for future aerospace missions. NASA/TM, S 215590Google Scholar
  3. 3.
    Barnett B, Sriramaulu S, Stringfellow R, Singh S, Ofer D, Oh B (2008) 25th International battery seminar and exhibit. Fort Lauderdale, Florida, USAGoogle Scholar
  4. 4.
    Choi S, LG Chem (2009) AABCGoogle Scholar
  5. 5.
    DuPont. Dupont energain separators for high performance lithium ion batteries. accessed on: 27 March 2012
  6. 6.
    Fujikawa M, Suzuki K, Inoue K, Shimada M (2006) Patent no. US 11396646Google Scholar
  7. 7.
    Ganesh Venugopal JM (1999) Characterization of microporous separators for lithium‐ion batteries. J Power Sources 77:34 – 41CrossRefGoogle Scholar
  8. 8.
    Avicenne (2013) The worldwide Battery market 2012 – 2025. BATTERIES 2013, Nice, France.Google Scholar
  9. 9.
    INERIS – L’Institut National de l’EnviRonnement industriel et des RisqueS (2011) Approche de la maîtrise des risques spécifiques de la filière véhicules électriques – Analyse préliminaire des risquesGoogle Scholar
  10. 10.
    Kritzer P (2006) Nonwoven support material for improved separators in Li‐polymer batteries. J Power Sources 161:1335 – 1340CrossRefGoogle Scholar
  11. 11.
    Lee S-Y, Park P-K, Kim J-H (2009) Patent no. WO 2009/066916 A2Google Scholar
  12. 12.
    Opel. Maximaler Einsatz fur Ihre Sicherheit. on: 27 March 2012
  13. 13.
    Orendorff CJ (2012) The role of separators in Li-ion cell safety. In: The electrochemical society interface summer 2012, pp. 61 – 65Google Scholar
  14. 14.
    Penth B, Hying C, Hörpel G, Schmidt F G (1998) Patent no. EP 0946270B1Google Scholar
  15. 15.
    Porous Materials. Excerpt from Porous Materials. rometer.html
  16. 16.
    Roth M, Weber C, Berg M, Geiger S, Hirn K, Waschinski C, et al (2010) Patent no. 2012/019626 WOGoogle Scholar
  17. 17.
    Roth PE (2009) The 26th international battery seminar and exhibit. Abuse Response of HEV and PHEV materials and cells. Fort Lauderdale, Florida, USAGoogle Scholar
  18. 18.
    Roth M, Moertel R, Geiger S (2013) A new type of nonwoven separator. In: 5. Internationale Fachtagung Kraftwerkbatterie – Lösungen für automobil und energieversorgungGoogle Scholar
  19. 19.
    Schell W, Zhang Z (1999) Celgard separators for lithium batteries. In: IEEE (ed.) The 14th annual battery conference. Long Beach, California, pp. 161 – 169Google Scholar
  20. 20.
    Weber C, Roth M, Kritzer P, Wagner R, Scharfenberger G (2008) Patent no. EP 2 235 766 B1Google Scholar
  21. 21.
    Yu W‐C, Geiger M W (1999) Patent no. EP 0715364B1Google Scholar
  22. 22.
    Zhang PA (2004) Battery separators. Chem Rev 104:4419 – 4462CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Freudenberg Vliesstoffe KGWeinheimGermany
  2. 2.Freudenberg Forschungsdienste KGWeinheimGermany

Personalised recommendations