Advertisement

Fields of application for lithium-ion batteries

  • Klaus BrandtEmail author
Chapter

Abstract

Due to ever-growing energy requirements, the world’s population is dependent on fossil energy sources, which will result in a shortage of these resources and possible climate changes. It is widely recognized that energy production increasingly needs to be covered by renewable energy sources. This trend has been fueled by the rapid economic growth of the so-called emerging countries and the decision by some industrial nations to phase out nuclear energy production. The increased use of renewable energies, such as solar and wind power, has ultimately resulted in the necessity to store electric power temporarily in order to bridge the gap between the time of producing energy and consuming it. Batteries can provide part of the required capacity, ranging from battery units for homes with several kWh of storage capacity through to large batteries with capacities in the MWh range suitable as grid storage systems. Other systems such as pump storage systems or compressed-air storage systems already exist, but can only be expanded to a limited extent because they require a specific geographical environment. In addition, other electrochemical storage systems are currently being applied or developed in the stationary battery system segment such as high-temperature batteries and redox-flow systems.

Bibliography

  1. 1.
    Kamath H (2011) Integrating batteries with the grid. In: 28th International battery seminar & exhibit, Fort Lauderdale, 14 – 17 March 2011Google Scholar
  2. 2.
    Doughty DH, Butler PC, Akhil AA, Clark NH, Boyes JD (2010) Batteries for large scale stationary energy storage. Electrochem Soc Interface 19(3):49 – 53CrossRefGoogle Scholar
  3. 3.
    AES Energy Storage: Very Soon, Utility-Scale Storage Will Always Be On The Resource Menu, Forbes, 12 November 2015, http://www.forbes.com/sites/peterdetwiler/2015/11/12/aes-energy-storage-very-soon-utility-scale-storage-will-always-be-on-the-resource-menu/#3fba0eee41b9, accessed on: 3 June 2016
  4. 4.
    VDI Nachrichten (2012) Lithium-Ionen-Speicher sollen Stromversorgung im Niederspannungssektor stabilisieren. http://www.vdi-nachrichten.com/artikel/Lithium-Ionen-Speicher-sollen-Stromversorgung-im-Niederspannungssektor-stabilisieren/56916/2, accessed on: 2 June 2016
  5. 5.
    Kyocera news releases: Kyocera to start exclusive sales in Japan of new residential-use energy management system combining solar power with Li-ion battery storage unit. http://global.kyocera.com/news/2012/0102_qpaq.html, accessed on: 2 June 2016
  6. 6.
    Denso Corporation news release: Denso develops vehicle-to-home power supply system for electric vehicles. http://www.globaldenso.com/en/newsreleases/120724-01.html. accessed on: 2 June 2016
  7. 7.
    Harris C, Meyers JP (2010) Working smarter, not harder: an introduction to the “Smart Grid”. Electrochem Soc Interface 19(3):45 – 48CrossRefGoogle Scholar
  8. 8.
    Electric Power Research Institute (ed.) EPRI smart grid demonstration update, April 2012. http://smartgrid.epri.com/doc/EPRI_Advisory_Update_April_2012_Issue.pdf, accessed on: 2 June 2016
  9. 9.
    Kempton W, Marra F, Anderson PB, Garcia-Valle R (2012) Business models and control and management architecture for EV electrical grid integration; prior publication, Chapter 4.Google Scholar
  10. 10.
    Reducing Energy Costs with Peak Shaving in Industrial Environments, Schneider Electric, http://www.schneider-electric.com.hk/documents/energy-efficiency-forum/Reducing-Energy-Costs-with-Peak-Shaving.pdf, accessed on: 3 June 2016
  11. 11.
    Norman S (2012) Demand for large scale batteries and alternatives. AABC Europe, Mainz, 18 – 22 JuneGoogle Scholar
  12. 12.
    C.K. Narula, R. Martinez, O. Onar, M.R. Starke, G. Andrews, Economic analysis of deploying used batteries in power systems, Oak Ridge Natl. Lab. (2011). Report ORNL/TM-2011/151.Google Scholar
  13. 13.
    Nguyen T, Savinell RF (2010) Flow batteries. Electrochem Soc Interface 19(3):49 – 53CrossRefGoogle Scholar
  14. 14.
    Gibbard HF (2011) Redox flow batteries for energy storage. In: 28th International battery seminar & exhibit, Fort Lauderdale, 14 – 17 March 2011Google Scholar
  15. 15.
    Sudworth J, Tilley AR (1985) The sodium sulfur battery, SpringerGoogle Scholar
  16. 16.
    NAS Energy Battery Storage Systems, NGK Insulators, Ltd, October 2013, http://www.eei.org/about/meetings/meeting_documents/abe.pdf, accessed on: 3 June 2016
  17. 17.
    Electricity Storage in the German Energy Transition, Agora Energiewende, December 2014, https://www.agora-energiewende.de/fileadmin/Projekte/2013/speicher-in-der-energiewende/Agora_Speicherstudie_EN_web.pdf, accessed on: 3 June 2016
  18. 18.
    Eger U (2011) Dual-battery system with lithium battery for the 12-V powernet of a vehicle. AABC Europe, Mainz, 6 – 10 JuneGoogle Scholar
  19. 19.
    Kessen J (2012) Lithium-ion advances in micro-hybrid applications. AABC Europe, Mainz, 18 – 22 JuneGoogle Scholar
  20. 20.
    How electric cars swap batteries. MIT Technology Review. http://www.technologyreview.com/demo/425889/how-electric-cars-swap-batteries/. accessed on: 2 June 2016
  21. 21.
    Pillot C (2012) Battery and material market outlook. AABC Europe, Mainz, 18 – 22 JuneGoogle Scholar
  22. 22.
    Nelson PA, Gallagher KG, Bloom I, Dees DW (2011) Modeling the performance and cost of lithium-ion batteries for electric-drive vehicles. Report ANL-11/32, Argonne National Laboratory, Sept 2011. http://www.ipd.anl.gov/anlpubs/2011/10/71302.pdf, accessed on: 2 June 2016
  23. 23.
    Sauer DW (2012) Full electric buses for public transport – markets and technology options for energy supply by lithium-ion batteries. AABC Europe, Mainz, 18 – 22 JuneGoogle Scholar
  24. 24.
    Thielmann A, Isenmann R, Wietschel M (2010) Technologie-Roadmap Lithium-Ionen-Batterien 2030. Fraunhofer-Institut für System- und Innovationsforschung ISI, Karlsruhe. http://www.forum-elektromobilitaet.de/assets/mime/c6ef10b72e9f2b1588821ed9baae7ba0/Lib_Road[1].pdf. accessed on: 2 June 2016
  25. 25.
    Brandt K (1986) A 65 Ah rechargeable lithium molybdenum disulfide battery. J Power Sources 18:117 – 125CrossRefGoogle Scholar
  26. 26.
    Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics 69:173 – 183CrossRefGoogle Scholar
  27. 27.
    Marginedes D, Planchais E (2011) Lithium metal polymer: performance and design for Paris EV project Autolib. AABC Europe, Mainz, 6 – 10 JuneGoogle Scholar
  28. 28.
    Helveston JP, Liu Y, McDonnell E, Fuchs E, Klampfl E, Michalek JJ, Will subsidies drive electric vehicle adoption? Transportation Research Part A 73 (2015) 96 – 112CrossRefGoogle Scholar
  29. 29.
    Green Batteries for RTG Cranes; Green Port 15 January 2016, http://www.greenport.com/news101/energy-and-technology/green-batteries-for-rtg-cranes, accessed on: 3 June 2016
  30. 30.
    Hamburger Hafen: Batteriebetriebene Schwerlastfahrzeuge fahren Container, Windkraft-Journal, 25 April 2014, http://www.windkraft-journal.de/2014/04/25/hamburg-hafen-batteriebetriebene-schwerlastfahrzeuge-fahren-container/51620, accessed on: 3 June 2016
  31. 31.
    Low carbon battery-powered train carries first passengers, The Guardian, 13 January 2015, http://www.theguardian.com/environment/2015/jan/13/low-carbon-battery-powered-train-carries-first-passengers, accessed on: 3 June 2016
  32. 32.
    Emissionsfrei im Hafen; Schiff & Hafen. http://www.schiffundhafen.de/news/schiffbau/single-view/view/emissionsfrei-im-hafen.html. accessed on: 2 June 2016
  33. 33.
    Erste Hybrid-Fähre verbindet Deutschland und Dänemark, Wirtschaftswoche, 25 May 2016, http://www.wiwo.de/technologie/green/tech/keine-abgase-in-kuestennaehe-erste-hybrid-faehre-verbindet-deutschland-und-daenemark/13644656.html, accessed on: 3 June 2016
  34. 34.
    Driving change; Airport World. http://www.airport-world.com/home/item/1460-driving-change. accessed on: 2 June 2016
  35. 35.
    Bernardus Hybrid Tug, Netherlands, Ship Technology.com http://www.ship-technology.com/projects/bernardus-hybrid-tug/, accessed on: 3 June 2016

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lithium Battery ConsultantWiesbadenGermany

Personalised recommendations