Lithium-ion cell and battery production processes

  • Karl-Heinz PettingerEmail author
  • Achim Kampker
  • Claus-Rupert Hohenthanner
  • Christoph Deutskens
  • Heiner Heimes
  • Ansgar vom Hemdt


Lithium-ion batteries for electric mobility applications consist of battery modules made up of many individual battery cells (Fig. 17.1). The number of battery modules depends on the application. The modules are installed in a lithium-ion battery together with a battery management system, a cooling system, temperature management, and power electronics. Different cell types can be used in battery modules; they include round cells, prismatic hardcase cells, or flat cells such as coffee bag cells or pouch cells (more detailed information available in Chapter 9).


  1. 1.
    Haselrieder (2013) Efficient electrode production for lithium-ion batteriesGoogle Scholar
  2. 2.
    Bauer W, Nötzel D (2011) Rheological properties of electrode pastes for lithium iron phosphate and NMC batteriesGoogle Scholar
  3. 3.
    Flynn J-C, Marsh C (2012) Development of continuous coating technology for lithium-ion electrodesGoogle Scholar
  4. 4.
    Haselrieder (2011) Auslegung und Scale-up des Trocknungsprozesses zur Fertigung von leistungsfähigen Elektroden mit optimierter Struktur und HaftungGoogle Scholar
  5. 5.
    Zheng Y, Tian L (2012) Calendering effects on the physical and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 cathodeGoogle Scholar
  6. 6.
    Scrosati B (2002) Advances in lithium-ion batteriesCrossRefGoogle Scholar
  7. 7.
    Spahr M, Goers D, Leone A, Grivei E (2011) Development of carbon conductive additives for advanced lithium ion batteries. J Power Sources 196(7):3404 – 34138.CrossRefGoogle Scholar
  8. 8.
    Sanchez-Gonzalez J, Macias-Garcia A, Alexandre-Franco MF, Gomez-Serrano V (2005) Electrical conductivity of carbon blacks under compression. Carbon 43:741 – 747CrossRefGoogle Scholar
  9. 9.
    Sides CR, Croce F, Young VY, Martin CR, Scrosati B (2005) A high-rate, nanocomposite LiFePO4/Carbon cathode. Electrochem Solid-State Lett 8(9):A484 – A487CrossRefGoogle Scholar
  10. 10.
    Chen J, Wang JZ, Minett AI, Liu Y, Lynam C, Liu H, Wallace GG (2009) Carbon nanotube network modified carbon fibre paper for Li-ion batteries. Energy Environ Sci 2:393 – 396CrossRefGoogle Scholar
  11. 11.
    Zhamu A, Shi J, Chen G, Fang Q, Jang BZ (2012) Graphene-enhanced anode particulates for lithium ion batteries. US 2012/0064409 A1Google Scholar
  12. 12.
    Buqa H, Holzapfel M, Krummeich F, Veit C, Novak P (2006) Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries. J Power Sources 161:617 – 62CrossRefGoogle Scholar
  13. 13.
    Lee J-H, Paik U, Hackley VA, Choi Y-M (2005) Effect of carboxymethyl cellulose on aqueous processing of natural graphite negative electrodes and their electrochemical performance for lithium batteries. J Electrochem Soc 152(9):A1763 – A1769CrossRefGoogle Scholar
  14. 14.
    Sano A, Kurihara M, Ogawa K, Iijima T, Maruyama S (2009) Decreasing the initial irreversible capacity loss of graphite negative electrode by alkali-addition. J Power Sources 192:703 – 707CrossRefGoogle Scholar
  15. 15.
    Lee JH, Lee S, Paik U, Choi Y-M (2005) Aqueous processing of natural graphite particulates for lithium-ion battery anodes and their electrochemical performance. J Power Sources 147:249 – 255CrossRefGoogle Scholar
  16. 16.
    Zaidi W, Oumellal Y, Bonnet J-P, Zhang J, Cuevas F, Latroche M, Bobet JL, Aymard L (2011) Carboxymethylcellulose and carboxymethycellulose-formate as binders in MgH2-carbon composites for lithium-ion batteries. J Power sources 196:2854 – 2857Google Scholar
  17. 17.
    Ouatani LE, Dedryvère R, Ledeuil J-B, Biensan P, Desbrieres J, Gonbeau D (2009) Surface film formation on carbonaceous electrode: influence of the binder chemistry. J Power Sources 89:72 – 80CrossRefGoogle Scholar
  18. 18.
    Lee J-H, Kim H-H, Wee SB, Paik U (2009) Effect of additives on the dispersion properties of aqueous based C/LiFePO4 paste and its impact on lithium ion battery high power properties. Hosaka powder technology foundation, KONA powder and particle. Journal 27CrossRefGoogle Scholar
  19. 19.
    Lanciotti C (2009) Lithium battery cell manufacturing process. Joint European Commission/EPoSS/ERTRAC workshop 2009, Brussels, Kemet Arcotronics Technologies, Sasso Marconi, ItalyGoogle Scholar
  20. 20.
    Schelisch J (2011) Forschung für die Produktion von Morgen, Portraits der ausgewählten Projekte im BMBF-Programm Forschung für die Produktion von morgen. Projektträger Karlsruhe (PTKA-PFT), Bundesministerium für Bildung und ForschungGoogle Scholar
  21. 21.
    Freedom CAR: Electrical energy storage system abuse test manual for electric and hybrid vehicle applications; Sandia Report, SAND 2005 – 3123Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Karl-Heinz Pettinger
    • 1
    Email author
  • Achim Kampker
    • 2
  • Claus-Rupert Hohenthanner
    • 3
  • Christoph Deutskens
    • 4
  • Heiner Heimes
    • 5
  • Ansgar vom Hemdt
    • 6
  1. 1.Technologiezentrum EnergieHochschule LandshutLandshutGermany
  2. 2.Chair of Production Engineering of E-Mobility ComponentsAachenGermany
  3. 3.Evonik Technology & Infrastructure GmbHHanauGermany
  4. 4.PEM Aachen GmbHAachenGermany
  5. 5.Chair of Production Engineering of E-Mobility ComponentsAachenGermany
  6. 6.Chair of Production Engineering of E-Mobility ComponentsAachenGermany

Personalised recommendations