Advertisement

Next generation technologies

  • Juergen JanekEmail author
  • Philipp Adelhelm
Chapter

Abstract

Rechargeable lithium-ion batteries have been continually developed since their introduction by Sony in 1991. Energy density is one of the key parameters for lithium-ion batteries. It was steadily increased by optimizing battery components such as electrode materials or electrolyte as well as by improving the cell construction technologies. The cell level progress during recent years is shown in Fig. 16.1. Both gravimetric (specific) and volumetric energy density were more than doubled.

Bibliography

  1. 1.
    Gesamt-Roadmap Energiespeicher für die Elektromobilität 2030, Fraunhofer-Institut für System und Innovationsforschung ISI, Karlsruhe, Dezember 2015Google Scholar
  2. 2.
    Herbert D, Ulam J (1962) Inventors; electric dry cells and storage batteriesGoogle Scholar
  3. 3.
    Nole DA, Moss V, Cordova R (1970) Inventors; battery employing lithium-sulphur electrodes with nonaqueous electrolyteGoogle Scholar
  4. 4.
    Abraham KM (1981) Status of rechargeable positive electrodes for ambient-temperature lithium batteries. J Power Sources 7(1):1 − 43MathSciNetCrossRefGoogle Scholar
  5. 5.
    Yamin H, Penciner J, Gorenshtain A, Elam M, Peled E (1985) The electrochemical-behavior of polysulfides in tetrahydrofuran. J Power Sources 14(1−3):129 − 134CrossRefGoogle Scholar
  6. 6.
    Akridge JR, Mikhaylik YV, White N (2004) Li/S fundamental chemistry and application to hig-performance rechargeable batteries. Solid State Ionics 175(1 – 4):243 – 245CrossRefGoogle Scholar
  7. 7.
    Mikhaylik YV, Akridge JR (2004) Polysulfide shuttle study in the Li/S battery system. J Electrochem Soc 151(11):A76 − A1969CrossRefGoogle Scholar
  8. 8.
    Nelson J, Misra S, Yang Y, Jackson A, Liu Y, Wang H et al (2012) In operando x-ray diffraction and transmission x-ray microscopy of lithium sulfur batteries. J Am Chem Soc 134(14):6337 – 6343CrossRefGoogle Scholar
  9. 9.
    Dominko R, Demir-Cakan R, Morcrette M, Tarascon J-M (2011) Analytical detection of soluble polysulphides in a modified Swagelok cell. Electrochem Commun 13(2):117 – 120CrossRefGoogle Scholar
  10. 10.
    Kumaresan K, Mikhaylik Y, White RE (2008) A mathematical model for a lithium-sulfur cell. J Electrochem Soc 155(8):A576 − A582CrossRefGoogle Scholar
  11. 11.
    Ji X, Lee KT, Nazar LF (2009) A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat Mater 8(6):500 – 506CrossRefGoogle Scholar
  12. 12.
    Schneider H, Garsuch A, Panchenko A, Gronwald O, Janssen N, Novak P (2012) Influence of different electrode compositions and binder materials on the performance of lithium-sulfur batteries. J Power Sources 205:420 – 425CrossRefGoogle Scholar
  13. 13.
    Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) Rechargeable lithium sulfur battery – II. Rate capability and cycle characteristics. J Electrochem Soc 150(6):A800 – A805CrossRefGoogle Scholar
  14. 14.
    Kang SH, Zhao X, Manuel J, Ahn HJ, Kim KW, Cho KK, Ahn JH (2014) Effect of sulfur loading on energy density of lithium sulfur batteries. PSSA 211(8):1895–1899Google Scholar
  15. 15.
    Hagen M, Fanz P, Tübke J (2014) Cell energy density and electrolyte/sulfur ratio in Li-S cells. J Power Sources 264:30–34CrossRefGoogle Scholar
  16. 16.
    Brückner J, Thieme S, Grossmann HT, Dörfler S, Althues H, Kaskel S (2014) Lithium-sulfur batteries: influence of C-rate, amount of electrolyte and sulfur loading on cycle performance. J Power Sources 268:82–87CrossRefGoogle Scholar
  17. 17.
    Cleaver T, Kovacik P, Marinescu M, Zhang T, Offer G (2018) Perspective—commercializing lithium sulfur batteries: are we doing the right research? J Electrochem Soc 165(1):A6029–A6033CrossRefGoogle Scholar
  18. 18.
    Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J, Beilstein J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. J Nanotechnol 6:1016–1055Google Scholar
  19. 19.
    Hassoun J, Scrosati B (2010) A high-performance polymer tin sulfur lithium ion battery. Angewandte Chemie Int Edition 49(13):2371 – 2374CrossRefGoogle Scholar
  20. 20.
    Aurbach D, Pollak E, Elazari R, Salitra G, Kelley CS, Affinito J (2009) On the surface chemical aspects of very high energy density, rechargeable li–sulfur batteries. J Electrochem Soc 156(8):A694 – A702CrossRefGoogle Scholar
  21. 21.
    Jozwiuk A, Sommer H, Janek J, Brezesinski T (2015) Fair performance comparison of different carbon blacks in lithium-sulfur batteries with practical mass loadings – simple design competes with complex cathode architecture. J Power Sources 296:454–461CrossRefGoogle Scholar
  22. 22.
    Medenbach L, Adelhelm P (2017) Cell concepts of metal-sulfur batteries (Metal = Li, Na, K, Mg): strategies for using sulfur in energy storage applications. Top Curr Chem 375(5):81CrossRefGoogle Scholar
  23. 23.
    Lin Z, Liu Z, Fu W, Dudney NJ, Liang C (2013) Lithium Polysulfidophosphates: A Family of Lithium-Conducting Sulfur-Rich Compounds for Lithium-Sulfur Batteries. Angewandte Chemie. 125(29):7608 – 11CrossRefGoogle Scholar
  24. 24.
    Yang Y, Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy & Environmental Science 6(5):1552 – 8CrossRefGoogle Scholar
  25. 25.
    Rauh RD, Abraham KM, Pearson GF, Surprenant JK, Brummer SB (1979) A lithium/dissolved sulfur battery with an organic electrolyte. J Electrochem Soc 126(4):523–527CrossRefGoogle Scholar
  26. 26.
    Zhang SS, Read JA (2012) A new direction for the performance improvement of rechargeable lithium/sulfur batteries. J Power Sources 200:77–82CrossRefGoogle Scholar
  27. 27.
    Zheng G, Cui Y (2013) A membrane-free lithium/polysulfide semi-liquid battery for large-scale energy storage. Energy Environ Sci 6:1552–1558CrossRefGoogle Scholar
  28. 28.
    Fu Y, Su YS, Manthiram A (2013) Highly reversible lithium/dissolved polysulfide batteries with carbon nanotube electrodes. Angew Chem Int Edit 52(27):6930–6935CrossRefGoogle Scholar
  29. 29.
    Hassoun J, Scrosati B (2010) Moving to a solid‐state configuration: a valid approach to making lithium‐sulfur batteries viable for practical applications. Adv Mater 22(45):5198–5201CrossRefGoogle Scholar
  30. 30.
    Nagata H, Chikusa Y (2014) A lithium sulfur battery with high power density. J Power Sources 264:206–210CrossRefGoogle Scholar
  31. 31.
    Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries. Beilstein J Nanotechnol 6:1016–1055CrossRefGoogle Scholar
  32. 32.
    Abraham KM, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1 – 5CrossRefGoogle Scholar
  33. 33.
    Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190 – A1195CrossRefGoogle Scholar
  34. 34.
    Sawyer DT, Valentine JS (1981) How super is superoxide. Acc Chem Res 14(12):393 − 400CrossRefGoogle Scholar
  35. 35.
    Aurbach D, Daroux M, Faguy P, Yeager E (1991) The electrochemistry of noble-metal electrodes in aprotic organic-solvents containing lithium-salts. J Electroanal Chem 297(1):225 – 244CrossRefGoogle Scholar
  36. 36.
    Mizuno F, Nakanishi S, Kotani Y, Yokoishi S, Iba H (2010) Rechargeable Li-air batteries with carbonate-based liquid electrolytes. Electrochem 78(5):403 – 405CrossRefGoogle Scholar
  37. 37.
    Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Barde F et al (2011) Reactions in the rechargeable Li-O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040 – 8047CrossRefGoogle Scholar
  38. 38.
    McCloskey BD, Scheffler R, Speidel A, Bethune DS, Shelby RM, Luntz AC (2011) On the efficacy of electrocatalysis in nonaqueous Li-O2 batteries. J Am Chem Soc 133(45):18038 – 18041CrossRefGoogle Scholar
  39. 39.
    Peng ZQ, Freunberger SA, Chen YH, Bruce PG (2012) A Reversible and Higher-Rate Li-O2 Battery. Science. 337(6094):563 – 6.CrossRefGoogle Scholar
  40. 40.
    Chase GV, Zecevic S, Walker W, Uddin J, Sasaki KA, Giordani V, Bryantsev V, Blanco M, Addison D (2011) US Patent Application No 20120028137 A1 2011Google Scholar
  41. 41.
    Hase Y, Shiga T, Nakano M, Takechi K, Setoyama N (2009) US Patent Application No US 2009/0239113 A1 2009Google Scholar
  42. 42.
    Chen Y, Freunberger SA, Peng Z, Fontaine O, Bruce PG (2013) Charging a Li–O2 battery using a redox mediator. Nat Chem 5:489–494CrossRefGoogle Scholar
  43. 43.
    Lim HD, Song H, Kim J, Gwon H, Bae Y, Park KY, Hong J, Kim H, Kim T, Kim YH, Lepró X, Ovalle-Robles R, Baughman R, Kang K (2014) Superior rechargeability and efficiency of lithium–oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst. Angew Chem Int Ed Engl 53(15):3926–3931CrossRefGoogle Scholar
  44. 44.
    Bergner BJ, Schürmann A, Peppler K, Garsuch A, Janek J (2014) TEMPO: a mobile catalyst for rechargeable Li-O2 batteries. J Am Chem Soc 136(42):15054–15064CrossRefGoogle Scholar
  45. 45.
    Feng N, Mu X, Zhang X, He P, Zhou H (2017) Intensive study on the catalytical behavior of N-methylphenothiazine as a coluble mediator to oxidize the Li2O2 cathode of the Li–O2 battery. ACS Appl Mater Interfaces 9(4):3733–3739CrossRefGoogle Scholar
  46. 46.
    Liang Z, Lu YC (2016) Critical role of redox mediator in suppressing charging instabilities of lithium–oxygen batteries. J Am Chem Soc 138(24):7574–7583CrossRefGoogle Scholar
  47. 47.
    Aetukuri NB, McCloskey BD, Garcia JM, Krupp LE, Viswanathan V, Luntz AC (2015) Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li–O2 batteries. Nat Chem 7:50–56CrossRefGoogle Scholar
  48. 48.
    Meini S, Piana M, Tsiouvaras N, Garsuch A, Gasteiger HA (2012) The effect of water on the discharge capacity of a non-catalyzed carbon cathode for Li-O2 batteries. Electrochem Solid-State Lett 15(4):A45–A48CrossRefGoogle Scholar
  49. 49.
    Schwenke KU, Metzger M, Restle T, Piana M, Gasteiger HA (2015) The influence of water and protons on Li2O2 crystal growth in aprotic Li-O2 cells. J Electrochem Soc 162(4):A573–A584CrossRefGoogle Scholar
  50. 50.
    Li F, Wu S, Li D, Zhang T, He P, Yamada A, Zhou H (2015) The water catalysis at oxygen cathodes of lithium–oxygen cells. Nat Commun 6:7843CrossRefGoogle Scholar
  51. 51.
    Xia C, Black R, Fernandes R, Adams B, Nazar LF (2015) The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries. Nat Chem 7:496–501CrossRefGoogle Scholar
  52. 52.
    Hartmann P, Bender CL, Vracar M, Dürr AK, Garsuch A, Janek J, Adelhelm P (2013) A rechargeable room-temperature sodium superoxide (NaO2) battery. Nat Mater 12:228 – 232CrossRefGoogle Scholar
  53. 53.
  54. 54.
    de Jonghe LC et al (2007) inventors; protected active metal electrode and battery cell structures with non-aqueous interlayer architectureGoogle Scholar
  55. 55.
    Peled E, Menkin S (2017) Review—SEI: past, present and future. J Electrochem Soc 164(7):A1703–A1719CrossRefGoogle Scholar
  56. 56.
    Aurbach D et al (2009) On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries. J Electrochem Soc 156(8):A694 − A702CrossRefGoogle Scholar
  57. 57.
    Brandt K (1994) Historical development of secondary lithium batteries. Solid State Ionics.69(3 – 4):173 – 183CrossRefGoogle Scholar
  58. 58.
    Monroe C, Newman J (2005) The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J Electrochem Soc 152(2):A396 – A404CrossRefGoogle Scholar
  59. 59.
    Li W, Yao H, Yan K, Zheng G, Liang Z, Chiang Y-M, Cui Y (2015) The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth. Nat Commun 6:7436.CrossRefGoogle Scholar
  60. 60.
    Ding F, Xu W, Graff GL, Zhang J, Sushko ML, Chen X, Shao Y, Engelhard MH, Nie Z, Xiao J, Liu X, Sushko PV, Liu J, Zhang J-G (2013) Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135(11):4450–4456.CrossRefGoogle Scholar
  61. 61.
    Suo L, Hu Y-S, Li H, Armand M, Chen L (2013) A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat Commun 4.Google Scholar
  62. 62.
    Qian J, Henderson WA, Xu W, Bhattacharya P, Engelhard M, Borodin O, Zhang J-G (2015) High rate and stable cycling of lithium metal anode. Nat Commun 6.Google Scholar
  63. 63.
    Khurana R, Schaefer JL, Archer LA, Coates GW (2014) Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J Am Chem Soc 136(20):7395–7402.CrossRefGoogle Scholar
  64. 64.
    Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/Silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486 – 1491CrossRefGoogle Scholar
  65. 65.
    Elazari R, Salitra G, Gershinsky G, Garsuch A, Panchenko A, Aurbach D (2012) Rechargeable lithiated silicon–sulfur (SLS) battery prototypes. Electrochem Commun 14(1):21 – 24CrossRefGoogle Scholar
  66. 66.
    Handbook of Solid State Batteries, 2nd ed., Dudney N J, West W C, Nanda J (Eds.), World Scientific 2015Google Scholar
  67. 67.
    Janek J, Zeier W (2016) A solid future for battery development. Nat Energy 1(9):16141Google Scholar
  68. 68.
    Luntz A C, Voss J, Reuter K (2015) Interfacial challenges in solid-state Li ion batteries. J Phys Chem Lett 6:4599–4604CrossRefGoogle Scholar
  69. 69.
    Robinson A L, Janek J (2014) Solid-state batteries enter EV fray. MRS Bulletin 39:1046CrossRefGoogle Scholar
  70. 70.
    Kato, Y. et al. (2016) High-power all-solid-state batteries using sulfide superionic conductors. Nat Energy 1:16030Google Scholar
  71. 71.
    Oh G, Hirayama M, Kwon O, Suzuki K, Kanno R (2016) Bulk-type all solid-state batteries with 5 V class LiNi0.5Mn1.5O4 cathode and Li10GeP2S12 solid electrolyte. Chem Mater 28:2634–2640Google Scholar
  72. 72.
    Bachman JC, Muy S, Grimaud A, Chang HH, Pour N, Lux SF, Paschos O, Maglia F, Lupart S, Lamp P, Giordano L, Shao-Horn Y (2016) Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chem Rev 116(1):140–162Google Scholar
  73. 73.
    Minami T, Hayashi A, Tatsumisago M (2006) Recent progress of glass and glass-ceramics as solid electrolytes for lithium secondary batteries. Solid State Ionics 177:2715–2720CrossRefGoogle Scholar
  74. 74.
    Wenzel S, Weber D, Leichtweiss T, Sann J, Janek J (2016) Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 286:24–33CrossRefGoogle Scholar
  75. 75.
    Zhu Y, He X, Mo Y (2015) Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl Mater Interface 7:23685–23693CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physikalisch Chemisches Institut & Laboratory for Materials Research (LaMa)Justus-Liebig-Universitat GiessenGiessenGermany
  2. 2.Institut fuer Technische Chemie und Umweltchemie, Center for Energy and Environmental Chemistry (CEEC Jena)Friedrich-Schiller-Universitaet JenaJenaGermany

Personalised recommendations