Advertisement

Biokerosene pp 95-122 | Cite as

Potentials of Biomass and Renewable Energy: The Question of Sustainable Availability

  • Arne Roth
  • Florian Riegel
  • Valentin Batteiger
Chapter

Abstract

Robust and detailed knowledge of the sustainable availability of biomass is crucial for the development of strategies, targets and roadmaps related to future use of bioenergy and biofuels. In this paper, an overview of existing studies on global biomass potentials is given. Specifically, land-based energy crops, wastes and residues as well as microalgae are addressed as biomass sources. It is shown that large potentials exist, but associated with considerable uncertainties. Furthermore, the scope of the discussion is extended from an exclusive focus on biomass feedstock to a more general view on renewable energy and on options of renewable fuel production beyond utilization of biomass. However, it is also shown that issues of sustainability and particularly economic aspects are not sufficiently addressed in the assessments that have been reported to date. Substantial research efforts are required to fill the remaining knowledge gap with respect to the sustainable and economic potentials of renewable energy and fuels.

References

  1. [1]
    The world population situation in 2014 – A concise report, United Nations Department of Economic and Social Affairs, New York, 2014Google Scholar
  2. [2]
    Adoption of the Paris agreement – proposal by the president, United Nations, Framework Convention on Climate Change, FCCC/CP/2015/L.9, Paris, 2015Google Scholar
  3. [3]
    Field CB, Behrenfeld MJ, Randerson JT, Falkowski P(1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240CrossRefGoogle Scholar
  4. [4]
    Kopetz H (2013) Build a biomass energy market. Nature 494:29–31CrossRefGoogle Scholar
  5. [5]
    Ambel CC (2016) Aviation biofuels: avoiding past sustainability mistakes. Transport & Environment, European Federation for Transport and Environment AISB, Brussels, 2016Google Scholar
  6. [6]
    Lampert DJ, Cai H, Elgowainy A (2016) Wells to wheels: water consumption for transportation fuels in the United States. Energy Environ Sci 9:787–802CrossRefGoogle Scholar
  7. [7]
    Gerbens-Leenes W, Hoekstra AY, van der Meer TH (2009) The water footprint of bioenergy. Proc Natl Acad Sci USA 106(25):10219–10223CrossRefGoogle Scholar
  8. [8]
    Cordell D, Drangert J-O, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Change 19(2):292–305CrossRefGoogle Scholar
  9. [9]
    Zhu X-G, Long SP, and Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotechnol 19(2):153–159CrossRefGoogle Scholar
  10. [10]
    Modellierung des globalen Potenzials von Energiepflanzen. In: Welt im Wandel: Zukunftsfähige Bioenergie und nachhaltige Landnutzung. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (German Advisory Council on Global Change), Berlin (2009), pp 101–138Google Scholar
  11. [11]
    Anton C, Steinicke H (eds) (2012) Bioenergy – chances and limits. German National Academy of Sciences Leopoldina, Halle (Saale)Google Scholar
  12. [12]
    Searle SY, Malins CJ (2012) A policy-oriented reassassment of bioenergy potential estimates. In: 20th European biomass conference and exhibitionGoogle Scholar
  13. [13]
    Erb K-H, Haberl H, Krausmann F, Lauk C, Plutzar C, Steinberger JK, Müller C, Bondeau A, Waha K, Pollack G (2009) Eating the planet: feeding and fuelling the world sustainably, fairly and humanely – a scoping study. Institute of Social Ecology, Vienna, p 116Google Scholar
  14. [14]
    van Vuuren DP, van Vliet J, Stehfest E (2009) Future bio-energy potential under various natural constraints. Energy Policy 37(11):4220–4230CrossRefGoogle Scholar
  15. [15]
    Doornbosch R, Steenblik R (2007) Biofuels: is the cure worse than the disease? Organisation for Economic Co-operation and Development (OECD), Paris, 2007Google Scholar
  16. [16]
    Smeets EMW, Faaij APC, Lewandowski IM, Turkenburg WC (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energy Combust Sci 33(1):56–106CrossRefGoogle Scholar
  17. [17]
    Hoogwijk M, Faaij A, Eickhout B, Devries B, Turkenburg W (2005) Potential of biomass energy out to 2100 for four IPCC SRES land-use scenarios. Biomass Bioenergy 29(4):225–257CrossRefGoogle Scholar
  18. [18]
    Hoogwijk M, Faaij A, van den Broek R, Berndes G, Gielen D, Turkenburg W (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25(2):119–133CrossRefGoogle Scholar
  19. [19]
    Wolf J, Bindraban PS, Luijten JC, Vleeshouwers LM (2003) Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agric Syst 76(3):841–861CrossRefGoogle Scholar
  20. [20]
    Nakada S, Saygi D, Gielen D (2014) Global bioenergy: supply and demand projections. International Renewable Energy Agency (IRENA), Abu Dhabi, September 2014Google Scholar
  21. [21]
    WBGU (2009) Welt im Wandel: Zukunftsfähige Bioenergie und nachhaltige Landnutzung. Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU), Berlin, 2009Google Scholar
  22. [22]
    Gopalakrishnan MCN, Snyder SW (2011) A novel framework to classify marginal land for sustainable biomass feedstock production. J Environ Qual 40(5):1593–1600CrossRefGoogle Scholar
  23. [23]
    Liu TT, McConkey BG, Ma ZY, Liu ZG, Li X, Cheng LL (2011) Strengths, weaknessness, opportunities and threats analysis of bioenergy production on marginal land. Energy Procedia 5:2378–2386CrossRefGoogle Scholar
  24. [24]
    Research project no. 50.0352/2012-L3. Assessment of potential international raw material capacities for use as fuel in aviation, funded by the German Federal Ministry of Transport and Digital Infrastructure (2015)Google Scholar
  25. [25]
    Riegel F, Roth A, Averdunk K (2015) Availability of feedstock materials for biogenic fuels (poster presentation on the ILA Berlin Air Show 2015)Google Scholar
  26. [26]
    Searle SY, Malins CJ (2016) Waste and residue availability for advanced biofuel production in EU member states. Biomass Bioenergy 89:2–10CrossRefGoogle Scholar
  27. [27]
    Lamers P, Thiffault E, Pare D, Junginger M (2013) Feedstock specific environmental risk levels related to biomass extraction for energy from boreal and temperate forests. Biomass Bioenergy 55:212–226CrossRefGoogle Scholar
  28. [28]
    Malins C, Searle S, Baral A, Turley D, Hopwood L (2014) Wasted -Europe’s untapped Resource. The International Council of Clean Transportation (ICCT), 2014Google Scholar
  29. [29]
    Hainan Airlines partners with Sinopec and Boeing on first biofuel-powered Chinese domestic commercial flight. GreenAir online 2015 [Online]. http://www.greenaironline.com/news.php?viewStory=2063. Accessed 08 Nov 2016
  30. [30]
    Boeing and COMAC open new demo facility to produce sustainable jet fuel from Chinese used cooking oil. Green Chemistry 2014 [Online]. http://www.greenaironline.com/news.php?viewStory=1994. Accessed 08 Nov 2016
  31. [31]
    UK first as Thomson Airways’ three-year biofuel commercial flight programme finally takes off. GreenAir online 2011 [Online]. http://www.greenaironline.com/news.php?viewStory=1347. Accessed 08 Nov 2016
  32. [32]
    KLM and SkyNRG start new series of long-haul sustainable jet fuel flights to the Caribbean as part of ITAKA project. GreenAir online 2014 [Online]. http://www.greenaironline.com/news.php?viewStory=1861. Accessed 08 Nov 2016
  33. [33]
    Toop G, Alberici S, Spoettle M, van Steen H (2013) Trends in the UCO market, ECOFYS, London, 2013Google Scholar
  34. [34]
    Zschocke A (2014) Abschlussbericht Projekt BurnFAIR, Deutsche Lufthansa, 2014Google Scholar
  35. [35]
    Economic performance of the airline industry -2016 mid-year report-, International Air Transport Association (IATA), Montreal, 2016Google Scholar
  36. [36]
    Richmond A (ed) (2004) Handbook of microalgal culture: biotechnology and applied phycology. Ames and Carlton: Blackwell Science Ltd., OxfordGoogle Scholar
  37. [37]
    Wigmosta MS, Coleman AM, Skaggs RJ, Huesemann MH, Lane LJ (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47:W00H04CrossRefGoogle Scholar
  38. [38]
    Skarka J (2015) Potenziale zur Erzeugung von Biomasse aus Mikroalgen in Europa unter besonderer Berücksichtigung der Flächen- und CO2 –Verfügbarkeit. Karlsruher Institut für Technologie, KarlsruheGoogle Scholar
  39. [39]
    Total Primary Energy Production 2014. U.S. energy information administration. [Online]. http://www.eia.gov/. Accessed 11 Nov 2016
  40. [40]
    Ames JL (2014) Microalgae-derived HEFA jet fuel: environmental and economic impacts of scaled/integrated growth facilities and global production potential. Massachusetts Institute of Technology, CambridgeGoogle Scholar
  41. [41]
    van der Giesen C, Kleijn R, Kramer GJ (May 2014) Energy and climate impacts of producing synthetic hydrocarbon fuels from CO2 Environ Sci Technol 48(12):7111–7121CrossRefGoogle Scholar
  42. [42]
    Falter C, Batteiger V, Sizmann A (2016) Climate impact and economic feasibility of solar thermochemical jet fuel production. Environ Sci Technol 50(1):470–477CrossRefGoogle Scholar
  43. [43]
    Roth A, Batteiger V, Riegel F, Falter C, Endres C (2015) Alternative fuels for aviation: technical potential of biofuels and beyond. In: AVT-230 specialists’ meeting on advanced aircraft propulsion systems, pp 1–18Google Scholar
  44. [44]
    Schmidt P, Weindorf W, Roth A, Batteiger V, Riegel F (2016) Power-to-liquids: potentials and perspectives for the – future supply of renewable – aviation fuel, German Environment Agency, Dessau-Roßlau, 2016Google Scholar
  45. [45]
    König DH, Baucks N, Dietrich RU, Wörner A (2015) Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2. Energy 91:833–841CrossRefGoogle Scholar
  46. [46]
    Chueh WC, Falter C, Abbott M, Scipio D, Furler P, Haile S M, Steinfeld A (2010) High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science 330:1797–1801CrossRefGoogle Scholar
  47. [47]
    Furler P, Scheffe JR, Steinfeld A (2012) Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor. Energy Environ Sci 5(3):6098CrossRefGoogle Scholar
  48. [48]
    Marxer DA, Furler P, Scheffe JR, Geerlings H, Falter C, Batteiger V, Sizmann A, Steinfeld A (2015) Demonstration of the entire production chain to renewable kerosene via solar-thermochemical splitting of H2O and CO2. Energy Fuels 29(5):3241–3250CrossRefGoogle Scholar
  49. [49]
    Stechel EB, Miller JE (2013) Re-energizing CO2 to fuels with the sun: issues of efficiency, scale, and economics. J CO2 Util, 1, 28-36Google Scholar
  50. [50]
    SOLAR-JET: Zero-carbon jet fuel from sunlight [Online]. http://www.solar-jet.aero/. Accessed 11 Nov 2016
  51. [51]
    König DH, Freiberg M, Dietrich R-U, Wörner A (2015) Techno-economic study of the storage of fluctuating renewable energy in liquid hydrocarbons. Fuel 159:289–297CrossRefGoogle Scholar
  52. [52]
    Trieb F, Schillings C, Sullivan MO, Pregger T, Hoyer-Klick C (2009) Global potential of concentrating solar power. SolarPaces Conference BerlinGoogle Scholar
  53. [53]
    Key World Energy Statistics 2014. OECD/IEA, 2014Google Scholar
  54. [54]
    Miller LM, Gans F, Kleidon A (2011) Estimating maximum global land surface wind power extractability and associated climatic consequences. Earth Syst Dyn 2:1–12CrossRefGoogle Scholar
  55. [55]
    Technological Roadmap Hydropower. OECD/IEA, 2012Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  1. 1.Bauhaus Luftfahrt e. V.Taufkirchen (bei München)Germany

Personalised recommendations