Biokerosene pp 497-542 | Cite as

Biokerosene Production from Bio-Chemical and Thermo-Chemical Biomass Conversion and Subsequent Fischer-Tropsch Synthesis

  • Reinhard RauchEmail author
  • Hermann Hofbauer
  • Ulf Neuling
  • Martin Kaltschmitt


Synthetic fuels derived from synthesis gas provided from gasification of solid fuels using the Fischer-Tropsch Synthesis are well-known and used since the 1920’s. The initial process used coal as feedstock to produce mainly diesel like fuels when crude oil was not at hand. Nowadays and especially in the context of alternative and climate friendly fuels new process chains are taken into consideration based on this overall principle. This includes the production of “green” syngas by biomass gasification or reforming of bio-methane from e.g. biogas plants based on a biochemical biomass conversion. Against this background the overall goal of this paper is to give an overview of the current state of these two syngas provision pathways and the subsequent synthesis options, mainly focusing on the Fischer-Tropsch Synthesis. The overall process chains can be categorized into the Biomass-to-Liquids (BtL) and the Biogas-to-Liquids (Bio-GtL) pathways.


  1. [1]
    Shell Global: The world’s largest gas-to-liquids plant is now fully onlineGoogle Scholar
  2. [2]
    U.S. Energy Information Administration (2016) International Energy Outlook 2016. With Projections to 2040, U.S. Department of Energy. DOE/EIA-0484(2016)Google Scholar
  3. [3]
    Rauch R, Hrbek J, Hofbauer H, (2013) Biomass gasification for synthesis gas production and applications of the syngas. WIREs Energy Environ. CrossRefGoogle Scholar
  4. [4]
    Whitty K (2015) Status report thermal gasification in the united states IEA Bioenergy Task 33, Meeting, Berlin, 29 November 2015Google Scholar
  5. [5]
    Kopetz H (2015), The future role of bioenergy in the global energy system. In: van Swaaij W, Kersten S, Palz W (ed) Biomass power for the world: transformation to effective use. ISBN 978-981-4669-24-5, p 147Google Scholar
  6. [6] Accessed Dec 2012.
  7. [7]
    Pfeifer C, Puchner B, Hofbauer H (2009) Comparison of dual fluidized bed steam gasification of biomass with and without selective transport of CO2. Chem Eng Sc 64:5073–5083CrossRefGoogle Scholar
  8. [8]
    Tijmensen MJA, Faaij APC, Hamelinck CN, van Hardeveld MRM (2002) Exploration of the possibilities for production of Fischer Tropsch liquids and power via biomass gasification Biomass Bioenerg 23:129–152CrossRefGoogle Scholar
  9. [9]
  10. [10]
    Gros S, Valin S (2013) Experimental and techno-economic assessments of CO2 recycling in a steam gasifier for SNG or FT diesel production (ReCO2 project). In: SGC seminar, Sweden, Okt. 2013Google Scholar
  11. [11]
    Göransson Kr, Söderlind U, He J, Zhang W (2011) Review of syngas production via biomass DFBGs Ren and Sust En Rev 15:482–492CrossRefGoogle Scholar
  12. [12]
    Knoef H (2005) Handbook biomass gasification. ISBN: 90-810068-1-9Google Scholar
  13. [13]
    Rauch R, Kiennemann A, Sauciu (2013) Fischer Tropsch Synthesis to Biofuels (BtL Process). In: The role of catalysis for the sustainable production of bio-fuels and bio-chemicals. ISBN 978-0-444-56330-9CrossRefGoogle Scholar
  14. [14]
    Boll W, Hochgesand G, Higman C, Supp E, Kalteier P, Müller W-D, Kriebel M, Schlichting H, Tanz H (2011) Gas production, 3. Gas treating. In: Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimGoogle Scholar
  15. [15]
    Dalai BH (2008) Fischer-Tropsch synthesis: a review of water effects on the performances of unsuppoerted and supported Co catalysts. Davis, Appl. Catal. A Gen. 348:1–15.CrossRefGoogle Scholar
  16. [16]
    Stevens DJ (2001) Hot gas conditioning: recent progress with larger-scale biomass gasification systems. Report by IEA Biomass Task 33 Thermal Gasification of Biomass. NREL/SR-510-29952.Google Scholar
  17. [17]
    Knoef H (2012) Handbook of biomass gasification, 2nd edn. ISBN: 978-90-819385-0-1Google Scholar
  18. [18]
    Knight R Green gasoline from wood using carbona gasification and Topsoe TIGAS Processes DOE Project DE-EE0002874Google Scholar
  19. [19]
    Hofbauer H, Rauch R, Bosch K, Koch R, Aichernig C (2002) Biomass CHP plant Güssing – a success story. Expert Meeting on Pyrolysis and Gasification of Biomass and Waste. October, Strasbourg., Accessed Jan 2016.Google Scholar
  20. [20]
    Zwart RWR, Bos A, Kuipers J (2010) Principle of OLGA tar removal system, in (ECN) ErCotN (ed) Online, p 2Google Scholar
  21. [21]
    Rauch R, Developments in biofuels of biomass steam gasification. In: Gasification Summit 2015, 25 and 26 Mar 2015, Prag Czech RepublicGoogle Scholar
  22. [22]
    Pröll T, Schöny G, Sprachmann G, Hofbauer H (2016) Introduction and evaluation of a double loop staged fluidized bed system for post-combustion CO2 capture using solid sorbents in a continuous temperature swing adsorption process. Chem Eng Sci 141:166–174CrossRefGoogle Scholar
  23. [23]
    Speight JG (2013) Gas Cleaning, in coal-fired power generation handbook. Wiley, Hoboken. CrossRefGoogle Scholar
  24. [24]
    Kraussler M, Binder M, Fail S, Bosch K, Hackel M, Hofbauer H (2015) Performance of a water gas shift pilot plant processing product gas from an industrial scale biomass steam gasification plant. Biomass Bioenerg. ISSN 0961-9534. Accessed 23 Dec 2015
  25. [25]
    Häussinger P, Lohmüller R, Watson AM (2000) Hydrogen, 3. Purification. In: Ullmann’s encyclopedia of industrial chemistry. Wiley, WeinheimGoogle Scholar
  26. [26]
    Kaltschmitt M, Hartmann H, Hofbauer H (2009) Energie aus biomasse. Springer, BerlinCrossRefGoogle Scholar
  27. [27]
    Wellinger A, Murphy J, Baxter D (2013) The biogas handbook. Science, production and applications. Woodhead publishing series in energy, no. 52. Woodhead, OxfordCrossRefGoogle Scholar
  28. [28]
    Kaltschmitt M (2015/16) Lessons “energy from biomass”, Hamburg University of Technology, Hamburg, Germany.Google Scholar
  29. [29]
    European Biogas Association EBA (2014) EBA biogas report 2014 is published! European Biogas Association, BrusselsGoogle Scholar
  30. [30]
    Aasberg-Petersen K, Christensen TS, Dybkjaer I, Sehested J, Østberg M, Coertzen RM, Keyser MJ, Steynberg AP (2004) Synthesis gas production for FT synthesis. Stud NREL/SR-510-29952. Surf Sci Catal 152:258–405CrossRefGoogle Scholar
  31. [31]
    Fischer F, Tropsch H (1923) The preparation of synthetic oil mixtures (synthol) from carbon monoxide and hydrogen. Brennstoff-Chem 4:276–285Google Scholar
  32. [32]
    Fischer F, Tropsch H (1926) Die Erdölsynthese bei gewöhnlichem Druck aus den Vergasungsprodukten der Kohlen. Brennstoff-Chemie 7:97–116Google Scholar
  33. [33]
    Dry ME (2002) The Fischer–Tropsch process. 1950–2000. Catal Today 71 (3–4):227–241. CrossRefGoogle Scholar
  34. [34]
    Adesina AA (1996). Hydrocarbon synthesis via Fischer-Tropsch reaction. Travails and triumphs. Appl Catal A-Gen 138(2):345–367. CrossRefGoogle Scholar
  35. [35]
    Steynberg A, Dry M (2004) Fischer-Tropsch technology. Stud Surf Sci Catal 152. ISBN:9780080472799Google Scholar
  36. [36]
    Sie ST, Krishna R (1999) Fundamentals and selection of advanced Fischer-Tropsch reactors. Appl Catal A-Gen 186(1):55–70CrossRefGoogle Scholar
  37. [37]
    Dry ME (2004) Present and future applications of the Fischer-Tropsch process. Appl. Catal. A-Gen 276(1):1–3CrossRefGoogle Scholar
  38. [38]
    de Deugd RM, Kapteijn F, Moulijn JA (2003) Trends in Fischer–Tropsch reactor technology. Opportunities for structured reactors. Top Catal 26(1–4):29–39. CrossRefGoogle Scholar
  39. [39]
  40. [40]
    Atkinson D, McDAniel J (2010) Microchannel reactors in fuel production. Pet. Technol. Q. (2):95–98Google Scholar
  41. [41]
    Velocys: Velocys. (Accessed 13 Nov 2015)
  42. [42]
    Flory PJ (1936) Molecular size distribution in linear condensation polymers 1. J Am Chem Soc 58(10):1877–1885. CrossRefGoogle Scholar
  43. [43]
    Schulz GV (1935) Über die Beziehung zwischen Reaktionsgeswindlichkeit und zusammensetzung des Reaktionsproduktes bei Makropolymerisationsvorgängen. Physikalische Chemie 30:379–398CrossRefGoogle Scholar
  44. [44]
    Spath PL, Dayton DC (2003) Preliminary screening – technical and economic assessment of synthesis gas to fuels and chemicals with emphasis on the potential for biomass-derived syngas. National Renewable Energy Laboratory [NREL], GoldenGoogle Scholar
  45. [45]
    Schulz H (1999) Short history and present trends of Fischer–Tropsch synthesis. Appl Catal A-Gen 186(1–2):3–12. CrossRefGoogle Scholar
  46. [46]
    Jager B, Espinoza R (1995) Advances in low temperature Fischer-Tropsch synthesis. Catal Today 23(1):17–28. CrossRefGoogle Scholar
  47. [47]
    Kasza T, Hancsók J (2011) Isomerization of paraffin mixtures produced from sunflower oil. Hung J Ind Chem 39(3):363–368Google Scholar
  48. [48]
    Ekbom T, Berglin N, Lögdberg S (2005) Black Liquor Gasification with Motor Fuel Production – BLGMF II. A techno-economic feasibility study on catalytic Fischer-Tropsch synthesis for synthetic diesel production in comparison with methanol and DME as transport fuels. Accessed 10 Apr 2014Google Scholar
  49. [49]
    Petersen P (1995) Untersuchung der Deaktivierung von Katalysatoren für die Methanolsynthese aus Kohlendioxid und Wasserstoff, 3057. Institut für Energieverfahrenstechnik, JülichGoogle Scholar
  50. [50]
    Fang K, Li D, Lin M, Xiang M, Wei W, Sun Y (2009) A short review of heterogeneous catalytic process for mixed alcohols synthesis via syngas. Catal Today 147(2):133–138. CrossRefGoogle Scholar
  51. [51]
    de Klerk A (2011) Fischer-tropsch refining, 1st edn. Wiley, WeinheimCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2018

Authors and Affiliations

  • Reinhard Rauch
    • 1
    Email author
  • Hermann Hofbauer
    • 2
  • Ulf Neuling
    • 3
  • Martin Kaltschmitt
    • 4
  1. 1.Karlsruhe Institute of TechnologyEngler-Bunte-InstituteKarlsruheGermany
  2. 2.Technische Universität WienInstitute of Chemical EngineeringWienAustria
  3. 3.Hamburg University of TechnologiesInstitute of Environmental Technology and Energy EconomicsHamburgGermany
  4. 4.Hamburg University of TechnologiesInstitute of Environmental Technology and Energy EconomicsHamburgGermany

Personalised recommendations